News

FOURTH TUNNEL BORING MACHINE ON WAY FOR SNOWY 2.0

07/07/2025

Green light for TBM to begin journey to Australia

Snowy Hydro is now preparing for the arrival of its fourth tunnel boring machine to join Snowy 2.0 – Australia’s largest renewable energy project.

This 178-metre long machine has been purpose-built to excavate a 5km tunnel through a complex geological area deep in the NSW Snowy Mountains, known as the long plain fault zone, that will eventually connect Tantangara reservoir with an  underground power station built almost 1km underground. 

The TBM has now passed factory acceptance testing at Herrenknecht’s Guangzhou factory in China, ensuring all its major systems (mechanical, electrical, control and hydraulics) are validated and the machine is ready to be shipped to Australia.

The pumped hydro expansion to the iconic Snowy Scheme, Snowy 2.0’s incredible scale and power will translate 2200MW of capacity to 350,000 MWh of energy, taking the excess electricity produced by wind and solar during the day and delivering it to provide stability to our energy grid when it’s needed most.

Snowy Hydro Chief Delivery Officer – Snowy 2.0 David Evans said the project would play a pivotal role in enabling Australia’s transition to clean energy.

“Snowy 2.0 is essentially a giant battery, providing long-duration storage for wind and solar power to complement the short-duration storage that batteries provide,” he said.

“The successful completion of factory acceptance testing is testament to months of meticulous design, rigorous testing, engineering excellence and collaboration.”

News

SNOWY 2.0 PROJECT UPDATE – MARCH 2024 

03/04/2024

This month we’ll update you on tunnel boring machine (TBM) Kirsten, which is putting Snowy 2.0 at the forefront of TBM tunnelling innovation, along with the unique concrete segments she will install as part of the inclined pressure shaft excavation and lining.

Damon Miller, Senior Engineering & Quality Manager for Snowy 2.0, works with the design, manufacturing and construction teams to plan and deliver the engineering solutions behind Snowy 2.0, the pumped hydro expansion of the Snowy Scheme.

Building the inclined pressure shaft (IPS) will be a unique and technically challenging engineering feat for the project team

After finishing the 2.9 kilometre Emergency Cable and Ventilation Tunnel, TBM Kirsten has been substantially modified for her next critical role excavating the IPS.

This very steep, 1.6 kilometre, 10 metre diameter shaft forms part of the waterway and will connect the headrace tunnel with the underground power station. 

Project director Dave Evans believes the specially manufactured segments being used for this shaft are going to change the world of hydropower. “It means we can do less steel lining, we can move power stations closer to the surface which is what we’ve done here and construct an inclined pressure shaft with a tunnel boring machine which all makes it safer, quicker and the quality a lot better.”

To see the latest Snowy 2.0 project statistics, view the fact sheet here.

To cope with the extreme and fluctuating water pressures in the IPS, the concrete segment rings lining the tunnel require bespoke connectors.

The Force Activated Coupling System or FACS are specially-developed steel couplers with pin and socket elements.

When the segment rings are interlocked, the pre-stressed FACS keep the joint closed when the tunnel experiences sharp changes in pressure from turbine operations and shut downs. It’s like water hammer when opening or closing a tap at home, just on a much larger scale.

This new technology has been developed by Future Generation joint venture partner Webuild and their designer Lombardi, with the FACS segments being manufactured at our precast factory in Cooma.

A large-scale test is being conducted by installing eight FACS rings to link the emergency, cable and ventilation tunnel with the IPS.

Meanwhile, innovative design by the leading TBM manufacturer Herrenknecht has allowed TBM Kirsten to be modified to safely tunnel uphill.

The machine’s working platforms, equipment and operator’s cabins all pivot to remain horizontal and the walkways become steps and ladderways. 

A screw conveyor will move excavated rock from the cutterhead. This feeds into a sandwich conveyor that has face-to-face rubber belts to hold the material so it can be transported down the steep slope without spillage.

The IPS is on a 47% incline so a monorail is being installed to transport workers and there is a rack and pinion system for multi-service vehicle access including segment delivery up the steep slope to the TBM.

News

100,000 SNOWY 2.0 TUNNEL SEGMENTS LOCALLY MANUFACTURED

29/02/2024

The Snowy 2.0 Cooma precast manufacturing facility has hit another significant milestone and completed production of 100,000 of the 130,000 concrete segments needed to line 27 kilometres of tunnels for the pumped-hydro megaproject. 

More than 230,000m3 (or more than 550,000 tonnes) of concrete has been used to manufacture these seven-tonne precast segments, installed by the three tunnel boring machines (TBMs) used on the Snowy project. 

Snowy Hydro CEO Dennis Barnes said it was pleasing for the project to be manufacturing and investing locally, while also providing employment opportunities. 

“About 200 people from the 3,000-strong Snowy 2.0 workforce work at the precast factory operated by our project contractor Future Generation Joint Venture,” Dennis said. “The facility supports local employment and also on-the-job training for a number of school-based apprentices from Monaro High.”   

The precast facility includes a concrete batching plant and onsite laboratory to check the quality of every segment produced. Many of the raw materials like aggregates are sourced from local quarries at Mt Mary and Nimmitabel.

Careful consideration and design of the concrete mix, which includes waste material, has meant significant reduction in the environmental production footprint while improving the segments’ durability and performance.

Carousels utilising robotics to automate the process of demoulding, cleaning and application of the release agent on the segment moulds have been used in the manufacturing process.

One of the two carousels has now been modified to produce the precast segments for the Snowy 2.0 inclined pressure shaft (IPS). This very steep 1.65km shaft will be excavated by TBM Kirsten and will link the underground power station with the headrace tunnel coming from Tantangara.

The IPS segments involve a world-first force-activated coupling system (FACS) designed to withstand the powerful internal forces of water moving through the 10-metre diameter inclined tunnel.

Installing segments with FACS eliminates the need for a second tunnel lining, thereby improving the quality, safety and the rate of tunnel completion. 

The Snowy 2.0 precast factory will produce approximately 9,000 IPS segments, with nine used in each tunnel-lining ring. The first ring prototype has been completed, with mass production expected to start next month.

FAST FACTS