News

SNOWY 2.0 UPDATE

18/07/2024
  • The Snowy Delivery team has completed 570,000 cubic metres of excavation of the Talbingo intake. The intake is where water will exit and enter the tailrace tunnel, connecting the lower Talbingo reservoir to the underground power station
  • Excavation of the Marica surge shaft has reached 95 metres. Mechanical excavation including rock breakers and excavators continues, with drill and blast methods also being used. Once complete, the 28 metre-wide and 250 metre-deep surge shaft will be used for water storage and pressure relief when the power station starts up, and to absorb the momentum. The Marica surge shaft will be one of the largest shafts of its type in the world
  • Excavation of the gate shaft at Tantangara is complete, with drill and blast work to excavate the transition tunnels linking it and the intake well advanced. The gate shaft is used to stop and start the flow of water into the headrace tunnel and power station for maintenance purposes or in the case of an emergency

Tunnel Boring Machines (TBMs) 

Florence

Florence is the TBM excavating the 16 kilometre headrace tunnel, which will connect the underground power station to the upper Tantangara reservoir

Following a seven-week operation to use ultra high pressure water jetting to remove very hard rock preventing the TBM from progressing, TBM Florence restarted excavation on Thursday 11 July

The Snowy delivery team expects highly variable ground conditions to continue ahead of TBM Florence, which will mean progress will continue to vary, particularly as the TBM navigates the curve leading to the main tunnel alignment

Lady Eileen Hudson

TBM Lady Eileen Hudson, which has completed the 2.8 kilometre main access tunnel to the power station, is now excavating the 6 kilometre tailrace tunnel, which will connect the underground power station to the lower Talbingo reservoir

The machine is progressing well and is approximately 3.0 kilometres into the tailrace tunnel

A conveyor belt extension and service modifications have recently been carried out so excavations to join the tailrace tunnel with the Talbingo intake excavation can commence

Kirsten

Kirsten is the TBM excavating the 1.6km Inclined Pressure Shaft (IPS – connecting the underground power station to the headrace tunnel that leads to the upper Tantangara reservoir), having already completed the 2.9km emergency, cable and ventilation tunnel

TBM Kirsten has installed 14 trial tunnel lining rings in the IPS using locally manufactured concrete segments specifically designed for the high water pressures that will be experienced in the IPS

Tunnelling of the IPS will be a pioneering engineering challenge, with the shaft’s incline reaching a steep 47 percent

News

SNOWY 2.0 AND TBM FLORENCE UPDATE – JUNE 2024

01/07/2024

At Tantangara in the NSW Snowy Mountains, we’re building critical infrastructure for Snowy 2.0, the major pumped-hydro expansion of the Snowy Scheme.

In the headrace tunnel, specialist contractors are continuing to conduct hydro blasting work to remove rock pinching on the shield of tunnel boring machine (TBM) Florence.

The Snowy 2.0 team stopped TBM Florence in May when extremely hard and abrasive rock conditions wore down cutter disks on the edge of the cutterhead very quickly as it traversed a curve in the tunnel.

In recent weeks we have moved TBM Florence forward in small increments several times and the machine remains fully operational.

The high pressure hydro blasting breaks up and disintegrates the surrounding rock so TBM Florence can navigate the curve onto the straight headrace tunnel alignment.

In the June project update, Snowy 2.0 tunnel engineer Nick Chapman, who oversees tunnel design and provides technical engineering support for construction activities, highlights progress at the Tantangara Reservoir intake and gate shaft, along with underground works to connect the two.

The gate shaft is one of the key structures in the overall Tantangara intake system, which also includes the intake diffuser, tunnel transitions and headrace tunnel.

The main function of the gate shaft is to stop and start the flow of water into the headrace tunnel and power station for maintenance purposes or in the case of an emergency.

Now the gate shaft is excavated, work is focused on the two transition tunnels either side.

These tunnels are well advanced, with the full length of the top heading complete and excavation to the invert on schedule for completion in July.  

The intake is now approximately 45 metres deep – the remaining excavation is being coordinated with work on the third transition tunnel. 

The next stage of the intake earthworks will involve the removal of the temporary “rock plug” and excavation into Tantangara reservoir, to allow water to flow through the intake and into the headrace tunnel. 

That’s something to look forward to in future updates!

News

TBM FLORENCE UPDATE – 12 JUNE

12/06/2024

High pressure water jetting continues to be used to remove rock impinging on the shield of Snowy 2.0 tunnel boring machine (TBM) Florence at Tantangara. 

The TBM was halted by the project team in extremely hard and abrasive rock conditions on 16 May, with specialist contractors commencing on 21 May. 

The high pressure water jetting technique to remove the rock is ongoing and working well. 

We expect highly variable ground conditions to continue ahead of TBM Florence in the headrace tunnel. 

Water jetting device mounted on the TBM cutterhead, with the machine’s shield on the left of the image and the rock on the right. The device directs a high-pressure water stream at the rock, causing the rock to break apart and disintegrate.
News

TBM FLORENCE UPDATE – 30 MAY

30/05/2024

The use of high pressure water jets to remove rock impinging on the shield of tunnel boring machine (TBM) Florence at Tantangara is continuing.

This technique, conducted by specialist contractors since 21 May, is working well, with a device mounted on the cutterhead directing a high-pressure water stream at the rock, which breaks apart and disintegrates.

We halted TBM Florence’s excavation of the Snowy 2.0 headrace tunnel in extremely hard and abrasive rock conditions on 16 May. Cutter disks on the edge of the cutterhead wore down very quickly and this, coupled with a curve in the tunnel, caused rock to pinch on the TBM’s shield.

We made the decision to stop tunnelling to ensure we did not damage TBM Florence.

The Snowy 2.0 project teams are monitoring progress of the rock removal so we can restart excavation.

We expect variable ground conditions to continue ahead of TBM Florence in the headrace tunnel, which will connect Tantangara Reservoir with the 2,200 megawatt Snowy 2.0 power station.

News

SNOWY 2.0 PROJECT UPDATE – MAY 2024

28/05/2024

In this month’s update, discover what it takes to support a huge construction operation like Snowy 2.0, as we build a 2,200 megawatt pumped hydro power station, more than 27 kilometres of waterway tunnels and other infrastructure.

While drill and blast activities, rock bolting and shotcreting continue underground, excavators work on the intakes and specialist crews operate the tunnel boring machines (TBMs), there are hundreds of people providing critically important support services.

Andrea Musacchio, Services Assurance Manager for Snowy 2.0, takes a look at what goes on behind the scenes of Snowy 2.0.

A major project component is managing truck and light vehicle logistics.

This includes thousands of road safety inspections annually, more than 260 bus trips taking workers to and from site each week and about 780 heavy vehicle movements, such as the distinctive segment trucks carrying locally manufactured tunnel lining segments for the TBMs.

The security team work at the gatehouse controlling site access and scan more than 6,000 people and 3,000 vehicles each week.

There are 20 heavy vehicle convoys a day at Lobs Hole, all managed by traffic controllers.

So far there have been more than 130 escorted loads of very large components delivered to site, some more than 7 metres wide. Few see these loads because they’re completed at night to minimise impact on the local communities and other road users.

The Snowy 2.0 General Services team of 190 people provide support functions that are vital to the day-to-day running of the project.

With a workforce of 3,000 people, many of whom are based onsite, the cleaners are kept busy with almost 2,000 room cleans a week.

 And it’s not surprising that there’s 75 caterers – they’re cooking more than 36,000 meals a week. That’s 17,000 eggs, 900 kilos of bacon and 2 and a quarter tonnes of sliced watermelon, just for starters.

The General Services crew conduct repairs and preventative maintenance around the camp facilities and also provide a site bus service that completes around 1,500 trips a week.

Trainers and fitness instructors help organise sporting competitions and oversee thousands of gym visits every month, while the community team provides workforce engagement and communication. There are also  hundreds of people in offices managing administration, invoicing and documentation, and organising meetings, rosters and site visits.

News

TBM FLORENCE UPDATE – 21 May

21/05/2024

With progress by tunnel boring machine (TBM) Florence in the headrace tunnel slowing in very hard and abrasive rock on Wednesday 15 May, the project ceased excavation by the TBM on Thursday 16 May due to rock pinching on the machine’s shield. This update on TBM operations was provided within 24 hours of the machine being stopped.

The Snowy 2.0 project team sought immediate advice from a specialist contractor with experience at other Australian projects with the same TBM situation. Today the contractor commenced work using high pressure water jets to remove the rock impinging on TBM Florence’s shield.

Timing for estimated recommencement of excavation will be determined on the successful removal of the rock. 

The next TBM Florence update will be provided in the week commencing Monday 27 May.

News

TBM FLORENCE UPDATE

16/05/2024

Tunnel boring machine Florence has been ramping up excavating the Snowy 2.0 headrace tunnel, recently reaching 12 metres per day for a period.

With progress slowing in very hard rock on Wednesday 15 May, today (16 May) the Snowy 2.0 project team ceased excavation by the TBM due to rock pinching on the machine’s shield.

We are currently investigating the best way to relieve this pressure prior to recommencing excavation.

News

SNOWY 2.0 PROJECT UPDATE – APRIL 2024

01/05/2024

Snowy 2.0 is a major pumped-hydro expansion of the Snowy Scheme and at Marica, high in the Snowy Mountains, a very wide and deep surge shaft connecting to the Snowy 2.0 headrace tunnel is being built. 

The surge shaft has two key purposes for the operation of a hydro power station: as a water storage and vacuum relief when the power station starts up, and to absorb the momentum of water movement within the headrace when the power station is shut down.

The Marica surge shaft is about 28 metres in diameter and is currently over 80 metres deep.

During its construction the walls of the shaft are supported temporarily by rock bolts and shotcrete and once it is excavated to its full depth of 250 metres, a permanent concrete lining will be installed from the bottom up.

We are excavating the shaft with a number of excavation methods, including using 36-tonne excavators that place loads of material into kibbles. This material is lifted out and dropped into a dump truck.

An integrated work platform and personnel hoist is in the final stages of commissioning to provide worker access now the shaft is becoming very deep.

In the latest project update, civil engineer and Snowy 2.0 project manager, Richard Clarke, details the significant work undertaken constructing Marica Trail to create a new permanent access road into the surge shaft site.

Marica Trail provides safe, all weather access for traffic, including heavy vehicles.

Building in steep terrain was challenging and required specialised rope access workers to install ground support for safety and stability.

The road has been very carefully constructed in a tight envelope. It’s 6.5 km long, with an elevation change of about 320 metres from top to bottom and multiple water crossings have been created, including over the Eucumbene River.

Over at Tantangara, drill and blast excavation to join the intake and gate shaft is underway from both structures. The transition from the intake changes shape as it is excavated to become the connection tunnel to the gate shaft.

At the same time, we have started drilling and blasting from the gate shaft to merge into the headrace tunnel alignment excavated by TBM Florence.

When completed, water will enter the headrace tunnel from the intake, on its way to the power station.

Snowy 2.0 is being engineered to deliver clean and reliable energy storage and generation for the next 150 years. The target date for commercial operation of all units is December 2028, with first power expected in the second half of 2027. 

Update – Thursday 2 May

Reports today that tunnel boring machine (TBM) Florence has stopped tunnelling are incorrect.

TBM Florence remains fully operational and is now more than 800 metres into excavation of the Snowy 2.0 headrace tunnel at Tantangara. The TBM has operated successfully since its restart on 8 December 2023 and has moved through identified soft ground into hard rock. 

The total distance tunnelled by all three Snowy 2.0 TBMs across the pumped-hydro renewable energy project is approximately nine kilometres.

As provided in evidence at two recent Senate Estimates hearings, Snowy Hydro has been investigating options to de-risk the headrace tunnel construction by excavating from the other end. This work remains ongoing.

News

100,000 SNOWY 2.0 TUNNEL SEGMENTS LOCALLY MANUFACTURED

29/02/2024

The Snowy 2.0 Cooma precast manufacturing facility has hit another significant milestone and completed production of 100,000 of the 130,000 concrete segments needed to line 27 kilometres of tunnels for the pumped-hydro megaproject. 

More than 230,000m3 (or more than 550,000 tonnes) of concrete has been used to manufacture these seven-tonne precast segments, installed by the three tunnel boring machines (TBMs) used on the Snowy project. 

Snowy Hydro CEO Dennis Barnes said it was pleasing for the project to be manufacturing and investing locally, while also providing employment opportunities. 

“About 200 people from the 3,000-strong Snowy 2.0 workforce work at the precast factory operated by our project contractor Future Generation Joint Venture,” Dennis said. “The facility supports local employment and also on-the-job training for a number of school-based apprentices from Monaro High.”   

The precast facility includes a concrete batching plant and onsite laboratory to check the quality of every segment produced. Many of the raw materials like aggregates are sourced from local quarries at Mt Mary and Nimmitabel.

Careful consideration and design of the concrete mix, which includes waste material, has meant significant reduction in the environmental production footprint while improving the segments’ durability and performance.

Carousels utilising robotics to automate the process of demoulding, cleaning and application of the release agent on the segment moulds have been used in the manufacturing process.

One of the two carousels has now been modified to produce the precast segments for the Snowy 2.0 inclined pressure shaft (IPS). This very steep 1.65km shaft will be excavated by TBM Kirsten and will link the underground power station with the headrace tunnel coming from Tantangara.

The IPS segments involve a world-first force-activated coupling system (FACS) designed to withstand the powerful internal forces of water moving through the 10-metre diameter inclined tunnel.

Installing segments with FACS eliminates the need for a second tunnel lining, thereby improving the quality, safety and the rate of tunnel completion. 

The Snowy 2.0 precast factory will produce approximately 9,000 IPS segments, with nine used in each tunnel-lining ring. The first ring prototype has been completed, with mass production expected to start next month.

FAST FACTS


News

SNOWY 2.0 PROJECT UPDATE – JANUARY 2024 

31/01/2024

Deep underground at Lobs Hole in the Snowy Mountains is the heart of Snowy 2.0, the pumped-hydro expansion of the mighty Snowy Scheme. It’s where we’re building a huge power station complex that will house equipment capable of generating 2,200 megawatts of renewable energy.

In this month’s update we’re celebrating a major power station construction milestone – the breakthrough blast of the machine hall cavern crown.

With excavation of the crown – or ceiling – of the cavern taking place from both ends, the final three metres of rock are drilled and charged with explosives according to a precise blast plan.

The tunnels are cleared and the shotfirer arms the electronic blasting system which uses a unique electrical pulse to initiate firing of the explosives.

According to Snowy 2.0 project director Dave Evans, the machine hall achievement signals further progress after the recent transformer hall cavern crown breakthrough and restart of tunnel boring machine Florence in the headrace tunnel at Tantangara.

“These milestones are only possible with the whole team working together as one, whether they are subcontractors like Orica, the company managing underground blasting operations, or the lead contractor Future Generation and Snowy working so closely together.”

To see the latest Snowy 2.0 project’s statistics, view the fact sheet here.

As the underground drill and blast works continue, the manufacturing of major hydropower components for Snowy 2.0 is also well underway.

Snowy Hydro senior quality engineer Victor Teo is based for part of the year in Shanghai, where Voith Hydro – the company producing major power station equipment for Snowy 2.0 – has a large facility. 

He also travels to nearby cities including Zhuji and in his quality and compliance role, participates in factory acceptance tests and hold point inspections for components being fabricated by subcontractor Shenke such as the draft tube liners and cones, and the huge stator frames.

The draft tube liners funnel water into and out of the power station turbines and are comprised of six segments. They are 4.6 metres high, 30 metres long and weigh 40 tonnes when assembled.

The six stator frames that house the generator are fabricated in two halves and are welded together for a total weight of more than 400 tonnes. 

Snowy Hydro has an integral part to play in establishing high standards of equipment manufacturing, which meet the engineering requirements for our critical Snowy 2.0 project infrastructure.

News

SNOWY 2.0 PROJECT UPDATE – DECEMBER 2023

19/12/2023

In December’s Snowy 2.0 update, Snowy Hydro CEO Dennis Barnes recaps progress and key events throughout the last 12 months.

The review and reset of the pumped-hydro Snowy Scheme expansion project has been a major milestone in 2023.

The reset has put Snowy 2.0 on a robust and sustainable footing, with new contract arrangements in place and a revised cost of $12 billion. The full commercial operation date for the new 2,200 megawatt power station is December 2028.

The focus for the project is prioritising safety and environmental outcomes while achieving construction program targets.

Meanwhile tunnel boring machine (TBM) Florence is underway again at Tantangara after a significant period paused in soft ground conditions after a surface depression formed above the cutterhead. Following an extensive process of ground stabilisation, the project has recently received NSW government approval for a planning modification, enabling the machine to restart tunnelling the headrace adit.

Progress highlights for 2023 include TBM Lady Eileen Hudson being relaunched in July to excavate her second tunnel for the project – she’s now one kilometre into the tailrace tunnel.

There are more than 2,700 people employed on Snowy 2.0 and a total of 20 million hours have been worked to date.

Drill and blast excavation of the power station cavern crowns is well underway from both ends of the machine and transformer halls and we’re seeing large power station components manufactured by Voith Hydro delivered to site.

Senior electrical quality engineer Victor Teo is in Shanghai, China, where Voith is fabricating some of the key electrical components for Snowy 2.0, including stator bars, rotor bars and poles.

The stator bars are bent to a precise shape and highly specialised insulation tape is applied by both machine and technician. These bars are part of the generator which is connected to the transformer to deliver electrical current.

Insulation resistance and short circuit tests are conducted on every bar to ensure compliance with our engineering requirements and Australian Standards.

468 stator bars are needed for each of the six pump-turbine generator units, so over 3,000 of them including spares will be produced.

There is always a member from the Snowy Hydro team in China to conduct quality assurance activities, monitor progress, act as a conduit to close out technical issues and to conduct Factory Acceptance Tests

Snowy 2.0 project manager and environmental engineer Emily Martin is at Tantangara, where TBM Florence is tunnelling in slurry, or closed, mode. This mode utilises the onsite slurry treatment plant and allows the team to pressurise the ground around the TBM to provide additional stability.

The intake excavation works at Tantangara are progressing well, with stage 2 well underway.

This involves another 78,000 cubic metres of drilling and blasting earthworks, along with rockbolt installation and shotcreting.

The intake excavation, which is where water will enter the headrace tunnel, is currently about 35 metres deep and it will be extended to a total depth of 55 metres.

News

SNOWY 2.0 PROJECT UPDATE – OCTOBER 2023

08/11/2023

In this month’s project update, we check on tunnel excavation at Talbingo, progress at the upstream surge shaft at Marica, and we hear about the specialised drilling underway to prepare for services such as power and communications between Lobs Hole, Marica and Tantangara.

Will Binsted, Snowy 2.0 Lobs Hole Construction Manager, has been working on the project for four years and is responsible for coordinating both surface and underground works. Will, who lives locally in Tumut, liaises with technical specialists as well as designers and project engineers across the busy worksite.

To see the latest Snowy 2.0 project’s statistics, view the fact sheet here.

A complex task is underway at Lobs Hole to drill boreholes for the pipes that will house power, water and fibre optic cable for communications across three of the Snowy 2.0 sites.

Horizontal directional drilling (HDD) is being used to drill 2.2km-long boreholes from Lobs Hole to Marica. The holes are initially 300 millimetres in diameter and have an elevation difference of 650 metres. 

Two drilling operations are underway from top and bottom and will join up to create a continuous borehole before being enlarged to 660 millimetres in diameter.

This type of drilling is used for service lines that cross under waterways or underground structures and requires a high level of skill to maintain directional control while operating a drill string up to 1.8km long. Snowy 2.0 has contracted HDD experts Michels for the project.

The boreholes eliminate the need to construct approximately five kilometres of roads and excavate up to 60 metre cuts in the steep terrain, helping the Snowy 2.0 project team minimise environmental impacts. 

HDD techniques will also be used to take services under the Snowy Mountains Highway and waterways across the plateau through to the Tantangara worksite.

At Marica, the 28 metre diameter headrace surge shaft is now one-fifth of the way to its final depth of 263 metres and we’re starting drill and blast activities. There are two hoisting buckets called kibbles with a capacity of 25 tonnes for loading out excavated rock.

Excavators break up the rock with hydraulic hammers before it’s loaded into the kibbles and craned out of the shaft. The kibbles are lowered into hoppers and the rock drops into an articulated dump truck before being removed to a temporary stockpile area.

With the shaft now more than 50 metres deep, an integrated work platform and personnel hoist is being installed to provide worker access. We’ve installed ventilation ducts to manage air quality. 

At Talbingo, tunnelling of the tailrace adit is complete. TBM Lady Eileen Hudson is now excavating the tailrace tunnel alignment and heading towards the power station complex. This marks the start of the first power waterway on the Snowy 2.0 project. 

Excavation is ahead of schedule, with more than 26 metres recently excavated in a single day. The tailrace tunnel is six kilometres in length, with TBM excavation continuing through to mid-2025. 

Snowy 2.0 is being engineered to deliver clean and reliable energy storage and generation for the next 150 years. The target date for commercial operation of all units is December 2028, with first power expected in the second half of 2027.