News

SNOWY 2.0 UPDATE

18/07/2024
  • The Snowy Delivery team has completed 570,000 cubic metres of excavation of the Talbingo intake. The intake is where water will exit and enter the tailrace tunnel, connecting the lower Talbingo reservoir to the underground power station
  • Excavation of the Marica surge shaft has reached 95 metres. Mechanical excavation including rock breakers and excavators continues, with drill and blast methods also being used. Once complete, the 28 metre-wide and 250 metre-deep surge shaft will be used for water storage and pressure relief when the power station starts up, and to absorb the momentum. The Marica surge shaft will be one of the largest shafts of its type in the world
  • Excavation of the gate shaft at Tantangara is complete, with drill and blast work to excavate the transition tunnels linking it and the intake well advanced. The gate shaft is used to stop and start the flow of water into the headrace tunnel and power station for maintenance purposes or in the case of an emergency

Tunnel Boring Machines (TBMs) 

Florence

Florence is the TBM excavating the 16 kilometre headrace tunnel, which will connect the underground power station to the upper Tantangara reservoir

Following a seven-week operation to use ultra high pressure water jetting to remove very hard rock preventing the TBM from progressing, TBM Florence restarted excavation on Thursday 11 July

The Snowy delivery team expects highly variable ground conditions to continue ahead of TBM Florence, which will mean progress will continue to vary, particularly as the TBM navigates the curve leading to the main tunnel alignment

Lady Eileen Hudson

TBM Lady Eileen Hudson, which has completed the 2.8 kilometre main access tunnel to the power station, is now excavating the 6 kilometre tailrace tunnel, which will connect the underground power station to the lower Talbingo reservoir

The machine is progressing well and is approximately 3.0 kilometres into the tailrace tunnel

A conveyor belt extension and service modifications have recently been carried out so excavations to join the tailrace tunnel with the Talbingo intake excavation can commence

Kirsten

Kirsten is the TBM excavating the 1.6km Inclined Pressure Shaft (IPS – connecting the underground power station to the headrace tunnel that leads to the upper Tantangara reservoir), having already completed the 2.9km emergency, cable and ventilation tunnel

TBM Kirsten has installed 14 trial tunnel lining rings in the IPS using locally manufactured concrete segments specifically designed for the high water pressures that will be experienced in the IPS

Tunnelling of the IPS will be a pioneering engineering challenge, with the shaft’s incline reaching a steep 47 percent

News

SNOWY 2.0 PROJECT UPDATE – MAY 2024

28/05/2024

In this month’s update, discover what it takes to support a huge construction operation like Snowy 2.0, as we build a 2,200 megawatt pumped hydro power station, more than 27 kilometres of waterway tunnels and other infrastructure.

While drill and blast activities, rock bolting and shotcreting continue underground, excavators work on the intakes and specialist crews operate the tunnel boring machines (TBMs), there are hundreds of people providing critically important support services.

Andrea Musacchio, Services Assurance Manager for Snowy 2.0, takes a look at what goes on behind the scenes of Snowy 2.0.

A major project component is managing truck and light vehicle logistics.

This includes thousands of road safety inspections annually, more than 260 bus trips taking workers to and from site each week and about 780 heavy vehicle movements, such as the distinctive segment trucks carrying locally manufactured tunnel lining segments for the TBMs.

The security team work at the gatehouse controlling site access and scan more than 6,000 people and 3,000 vehicles each week.

There are 20 heavy vehicle convoys a day at Lobs Hole, all managed by traffic controllers.

So far there have been more than 130 escorted loads of very large components delivered to site, some more than 7 metres wide. Few see these loads because they’re completed at night to minimise impact on the local communities and other road users.

The Snowy 2.0 General Services team of 190 people provide support functions that are vital to the day-to-day running of the project.

With a workforce of 3,000 people, many of whom are based onsite, the cleaners are kept busy with almost 2,000 room cleans a week.

 And it’s not surprising that there’s 75 caterers – they’re cooking more than 36,000 meals a week. That’s 17,000 eggs, 900 kilos of bacon and 2 and a quarter tonnes of sliced watermelon, just for starters.

The General Services crew conduct repairs and preventative maintenance around the camp facilities and also provide a site bus service that completes around 1,500 trips a week.

Trainers and fitness instructors help organise sporting competitions and oversee thousands of gym visits every month, while the community team provides workforce engagement and communication. There are also  hundreds of people in offices managing administration, invoicing and documentation, and organising meetings, rosters and site visits.

News

SNOWY 2.0 PROJECT UPDATE – MARCH 2024 

03/04/2024

This month we’ll update you on tunnel boring machine (TBM) Kirsten, which is putting Snowy 2.0 at the forefront of TBM tunnelling innovation, along with the unique concrete segments she will install as part of the inclined pressure shaft excavation and lining.

Damon Miller, Senior Engineering & Quality Manager for Snowy 2.0, works with the design, manufacturing and construction teams to plan and deliver the engineering solutions behind Snowy 2.0, the pumped hydro expansion of the Snowy Scheme.

Building the inclined pressure shaft (IPS) will be a unique and technically challenging engineering feat for the project team

After finishing the 2.9 kilometre Emergency Cable and Ventilation Tunnel, TBM Kirsten has been substantially modified for her next critical role excavating the IPS.

This very steep, 1.6 kilometre, 10 metre diameter shaft forms part of the waterway and will connect the headrace tunnel with the underground power station. 

Project director Dave Evans believes the specially manufactured segments being used for this shaft are going to change the world of hydropower. “It means we can do less steel lining, we can move power stations closer to the surface which is what we’ve done here and construct an inclined pressure shaft with a tunnel boring machine which all makes it safer, quicker and the quality a lot better.”

To see the latest Snowy 2.0 project statistics, view the fact sheet here.

To cope with the extreme and fluctuating water pressures in the IPS, the concrete segment rings lining the tunnel require bespoke connectors.

The Force Activated Coupling System or FACS are specially-developed steel couplers with pin and socket elements.

When the segment rings are interlocked, the pre-stressed FACS keep the joint closed when the tunnel experiences sharp changes in pressure from turbine operations and shut downs. It’s like water hammer when opening or closing a tap at home, just on a much larger scale.

This new technology has been developed by Future Generation joint venture partner Webuild and their designer Lombardi, with the FACS segments being manufactured at our precast factory in Cooma.

A large-scale test is being conducted by installing eight FACS rings to link the emergency, cable and ventilation tunnel with the IPS.

Meanwhile, innovative design by the leading TBM manufacturer Herrenknecht has allowed TBM Kirsten to be modified to safely tunnel uphill.

The machine’s working platforms, equipment and operator’s cabins all pivot to remain horizontal and the walkways become steps and ladderways. 

A screw conveyor will move excavated rock from the cutterhead. This feeds into a sandwich conveyor that has face-to-face rubber belts to hold the material so it can be transported down the steep slope without spillage.

The IPS is on a 47% incline so a monorail is being installed to transport workers and there is a rack and pinion system for multi-service vehicle access including segment delivery up the steep slope to the TBM.

News

SNOWY 2.0 PROJECT UPDATE – FEBRUARY 2024

28/02/2024

The new Snowy 2.0 power station will boast the latest in hydro technology, delivered by our expert subcontractor Voith Hydro. In the latest project update, Snowy 2.0 mechanical engineer Mahali Heffner details how quality assurance activities and factory acceptance testing is carried out on each power station component.

Every one of the hundreds of pump-turbine-generator components undergoes rigorous testing before it leaves the Voith factory. This is to ensure they meet high quality standards and will operate reliably when the power station is switched on.

A team of Snowy Hydro and independent assessors recently conducted mechanical and hydraulic dimensional checks on the first Snowy 2.0 runner at the Voith factory in Shanghai, China.

The runner is the heart of a hydro turbine – it’s the rotating element that drives the generator to produce power.

Acceptance testing includes checking the profile of the blades and surface examinations.

Dye penetrant testing is used to identify imperfections on the surface of the 31 tonne, 4.2 metres-wide runner. We spray on a red dye, clean it and apply the developer. If imperfections are present, the dye will make them visual.

Snowy Hydro and contractor Future Generation Joint Venture (FGJV) work with Voith and other subcontractors on a range of quality assurance activities as part of the multi-stage manufacturing process.

At Lobs Hole in the Snowy Mountains, power station components including turbine guard valves, spiral cases and draft tube liners are being progressively delivered to site.

Meanwhile, deep underground, excavation of the machine hall and transformer hall cavern crowns have been completed and we’ve almost finished the final side slashing to widen the structures. Drill and blast works are also continuing in the cross passages and tunnels that are an important part of the power station complex.

At the other end of the project at Tantangara, the intake is really starting to take shape. We are well into stage two of the excavation, now approximately 49 metres below ground level and approximately six metres to go. 

We map the cut face to determine what rock support is required and then after the design is confirmed, rock bolts and shotcrete are installed. It’s exciting to see the shape of the transition from intake to tunnel, with the canopy tube rock support in the intake face forming an arch above the tunnel entrance. 

Drill and blast of the tunnel excavation is scheduled to start soon and the first milestone target will be to link up the intake with the gate shaft. 

News

SNOWY 2.0 PROJECT UPDATE – JANUARY 2024 

31/01/2024

Deep underground at Lobs Hole in the Snowy Mountains is the heart of Snowy 2.0, the pumped-hydro expansion of the mighty Snowy Scheme. It’s where we’re building a huge power station complex that will house equipment capable of generating 2,200 megawatts of renewable energy.

In this month’s update we’re celebrating a major power station construction milestone – the breakthrough blast of the machine hall cavern crown.

With excavation of the crown – or ceiling – of the cavern taking place from both ends, the final three metres of rock are drilled and charged with explosives according to a precise blast plan.

The tunnels are cleared and the shotfirer arms the electronic blasting system which uses a unique electrical pulse to initiate firing of the explosives.

According to Snowy 2.0 project director Dave Evans, the machine hall achievement signals further progress after the recent transformer hall cavern crown breakthrough and restart of tunnel boring machine Florence in the headrace tunnel at Tantangara.

“These milestones are only possible with the whole team working together as one, whether they are subcontractors like Orica, the company managing underground blasting operations, or the lead contractor Future Generation and Snowy working so closely together.”

To see the latest Snowy 2.0 project’s statistics, view the fact sheet here.

As the underground drill and blast works continue, the manufacturing of major hydropower components for Snowy 2.0 is also well underway.

Snowy Hydro senior quality engineer Victor Teo is based for part of the year in Shanghai, where Voith Hydro – the company producing major power station equipment for Snowy 2.0 – has a large facility. 

He also travels to nearby cities including Zhuji and in his quality and compliance role, participates in factory acceptance tests and hold point inspections for components being fabricated by subcontractor Shenke such as the draft tube liners and cones, and the huge stator frames.

The draft tube liners funnel water into and out of the power station turbines and are comprised of six segments. They are 4.6 metres high, 30 metres long and weigh 40 tonnes when assembled.

The six stator frames that house the generator are fabricated in two halves and are welded together for a total weight of more than 400 tonnes. 

Snowy Hydro has an integral part to play in establishing high standards of equipment manufacturing, which meet the engineering requirements for our critical Snowy 2.0 project infrastructure.

News

SNOWY 2.0 PROJECT UPDATE – DECEMBER 2023

19/12/2023

In December’s Snowy 2.0 update, Snowy Hydro CEO Dennis Barnes recaps progress and key events throughout the last 12 months.

The review and reset of the pumped-hydro Snowy Scheme expansion project has been a major milestone in 2023.

The reset has put Snowy 2.0 on a robust and sustainable footing, with new contract arrangements in place and a revised cost of $12 billion. The full commercial operation date for the new 2,200 megawatt power station is December 2028.

The focus for the project is prioritising safety and environmental outcomes while achieving construction program targets.

Meanwhile tunnel boring machine (TBM) Florence is underway again at Tantangara after a significant period paused in soft ground conditions after a surface depression formed above the cutterhead. Following an extensive process of ground stabilisation, the project has recently received NSW government approval for a planning modification, enabling the machine to restart tunnelling the headrace adit.

Progress highlights for 2023 include TBM Lady Eileen Hudson being relaunched in July to excavate her second tunnel for the project – she’s now one kilometre into the tailrace tunnel.

There are more than 2,700 people employed on Snowy 2.0 and a total of 20 million hours have been worked to date.

Drill and blast excavation of the power station cavern crowns is well underway from both ends of the machine and transformer halls and we’re seeing large power station components manufactured by Voith Hydro delivered to site.

Senior electrical quality engineer Victor Teo is in Shanghai, China, where Voith is fabricating some of the key electrical components for Snowy 2.0, including stator bars, rotor bars and poles.

The stator bars are bent to a precise shape and highly specialised insulation tape is applied by both machine and technician. These bars are part of the generator which is connected to the transformer to deliver electrical current.

Insulation resistance and short circuit tests are conducted on every bar to ensure compliance with our engineering requirements and Australian Standards.

468 stator bars are needed for each of the six pump-turbine generator units, so over 3,000 of them including spares will be produced.

There is always a member from the Snowy Hydro team in China to conduct quality assurance activities, monitor progress, act as a conduit to close out technical issues and to conduct Factory Acceptance Tests

Snowy 2.0 project manager and environmental engineer Emily Martin is at Tantangara, where TBM Florence is tunnelling in slurry, or closed, mode. This mode utilises the onsite slurry treatment plant and allows the team to pressurise the ground around the TBM to provide additional stability.

The intake excavation works at Tantangara are progressing well, with stage 2 well underway.

This involves another 78,000 cubic metres of drilling and blasting earthworks, along with rockbolt installation and shotcreting.

The intake excavation, which is where water will enter the headrace tunnel, is currently about 35 metres deep and it will be extended to a total depth of 55 metres.

News

SNOWY 2.0 PROJECT UPDATE – OCTOBER 2023

08/11/2023

In this month’s project update, we check on tunnel excavation at Talbingo, progress at the upstream surge shaft at Marica, and we hear about the specialised drilling underway to prepare for services such as power and communications between Lobs Hole, Marica and Tantangara.

Will Binsted, Snowy 2.0 Lobs Hole Construction Manager, has been working on the project for four years and is responsible for coordinating both surface and underground works. Will, who lives locally in Tumut, liaises with technical specialists as well as designers and project engineers across the busy worksite.

To see the latest Snowy 2.0 project’s statistics, view the fact sheet here.

A complex task is underway at Lobs Hole to drill boreholes for the pipes that will house power, water and fibre optic cable for communications across three of the Snowy 2.0 sites.

Horizontal directional drilling (HDD) is being used to drill 2.2km-long boreholes from Lobs Hole to Marica. The holes are initially 300 millimetres in diameter and have an elevation difference of 650 metres. 

Two drilling operations are underway from top and bottom and will join up to create a continuous borehole before being enlarged to 660 millimetres in diameter.

This type of drilling is used for service lines that cross under waterways or underground structures and requires a high level of skill to maintain directional control while operating a drill string up to 1.8km long. Snowy 2.0 has contracted HDD experts Michels for the project.

The boreholes eliminate the need to construct approximately five kilometres of roads and excavate up to 60 metre cuts in the steep terrain, helping the Snowy 2.0 project team minimise environmental impacts. 

HDD techniques will also be used to take services under the Snowy Mountains Highway and waterways across the plateau through to the Tantangara worksite.

At Marica, the 28 metre diameter headrace surge shaft is now one-fifth of the way to its final depth of 263 metres and we’re starting drill and blast activities. There are two hoisting buckets called kibbles with a capacity of 25 tonnes for loading out excavated rock.

Excavators break up the rock with hydraulic hammers before it’s loaded into the kibbles and craned out of the shaft. The kibbles are lowered into hoppers and the rock drops into an articulated dump truck before being removed to a temporary stockpile area.

With the shaft now more than 50 metres deep, an integrated work platform and personnel hoist is being installed to provide worker access. We’ve installed ventilation ducts to manage air quality. 

At Talbingo, tunnelling of the tailrace adit is complete. TBM Lady Eileen Hudson is now excavating the tailrace tunnel alignment and heading towards the power station complex. This marks the start of the first power waterway on the Snowy 2.0 project. 

Excavation is ahead of schedule, with more than 26 metres recently excavated in a single day. The tailrace tunnel is six kilometres in length, with TBM excavation continuing through to mid-2025. 

Snowy 2.0 is being engineered to deliver clean and reliable energy storage and generation for the next 150 years. The target date for commercial operation of all units is December 2028, with first power expected in the second half of 2027. 

News

SNOWY 2.0 PROJECT UPDATE – SEPTEMBER 2023

05/10/2023

Following the recent announcement of the Snowy 2.0 project reset, the Snowy Hydro and Future Generation contractor teams are now a single team, working in close collaboration to achieve full commercial operation by December 2028.

The Snowy 2.0 Project Team is focused on excellent environmental outcomes while maintaining all-important safety principles. Safety is the number one priority for Snowy Hydro and core to the company’s values. High expectations for the management of all safety risks extend across the Snowy 2.0 project, without compromise.

Snowy 2.0 is critical to Australia’s transition to a low-carbon economy and when complete it will have broad-scale environmental benefits. Consistent with its responsible operation of the Snowy Scheme in Kosciuszko National Park for almost 70 years, Snowy Hydro is equally committed to minimising potential impacts from Snowy 2.0.

SAFETY PERFORMANCE
– As at September 2023, the project’s 12-month rolling TRIFR (Total Reportable Injury Frequency Rate) is 2.97, below the target of 4.0.**
– There has been a reduction in recordable and serious incidents on the project, with a focus on planning and a coordinated approach to safety management.
– Snowy 2.0 works closely with Comcare and SafeWork NSW and will continue to incorporate lessons learned and findings from the regulator into operational practices. 
**Calculated per million hours worked. Total hours worked to end September 2023: >17.7 million.

Construction of Snowy 2.0 will temporarily impact less than 0.1% of the park with any short-term unavoidable impacts rehabilitated throughout the project, in accordance with environmental project approvals. This includes around $100 million provided by Snowy Hydro to the offsets program for Kosciuszko National Park. Once operational, Snowy 2.0’s footprint within the park will be only 0.01%.

ENVIRONMENTAL PERFORMANCE
– 4 independent audits of the Snowy 2.0 project undertaken since project commencement. 
– 1,500 hours spent annually to proactively monitor the 163 biodiversity sites.
– More than 200 kilograms of native seed collected over three years for rehabilitation activities.
– 27 heritage site excavations and more than 35,00 indigenous artefacts salvaged and currently being documented, adding to the history of the Snowy Mountains Indigenous people. 

In this month’s update from the main worksite at Lobs Hole, Project Integration Manager Paul Smith recaps progress to date with over 40 per cent of Snowy 2.0 now complete, including:

  • Excavation of the 2.85 kilometre main access tunnel, lined with almost 13,000 locally manufactured concrete segments.
  • Excavation of the 2.9 kilometre emergency, cable and ventilation tunnel. 
  • Major upgrade of Ravine Road, the steep and winding 15 kilometre access road into Lobs Hole.
  • Infrastructure to support construction including the main yard workshops, worker campsites and more than 50 kilometres of access roads across three main worksites at Lobs Hole, Marica and Tantangara.

Excavation is underway of the huge 250 metre-long underground power station cavern and the tailrace tunnel, and TBM Kirsten is being modified to excavate the world-leading inclined pressure shaft. Drill and blast to create 11 cross passages and construction tunnels continues.

Above ground, there is plenty of activity across all sites. Lobs Hole Surface Works Project Manager Steve Lee helps ensure the Snowy 2.0 project is delivered in a safe and timely way, and to the quality standards and requirements of Snowy Hydro.

Surface works refers to a broad mix of activity such as haulage of spoil, maintenance of site roads, environmental controls, main yard area activity, office facilities and directional drilling, as well as the Talbingo intake build.

Latest progress on site includes Stage 2 earthworks with a recent blast covering an area of 4,500 square metres. About 10,000 cubic metres of material is being removed as the excavation of the 104-metre-high intake continues.

Snowy 2.0 is the largest renewable energy project under construction in Australia and will provide crucial deep storage central to Australia’s renewable transition. When complete, Snowy 2.0 will deliver 2,200 megawatts of dispatchable generation.

News

SNOWY 2.0 PROJECT UPDATE – JULY 2023

28/07/2023

July marked an exciting milestone for Snowy Hydro, the Snowy 2.0 project and for one of its three tunnel boring machines. Tunnel boring machine (TBM) Lady Eileen Hudson was the first machine to start tunnelling on the pumped-hydro mega project, the first to complete a tunnel and is now underway on her second tunnel excavation.

Snowy 2.0 senior project manager, Rodd Brinkman, is onsite at the Talbingo adit, where teams have been preparing to relaunch TBM Lady Eileen into the mountain.

The TBM will excavate the 6km tailrace tunnel to connect Talbingo Reservoir to the underground power station complex. Water used to generate 2,000 megawatts of power from Snowy 2.0 will flow out of the tailrace tunnel. Water also enters this tunnel when the power station is pumping.

After completing the 2.8km main access tunnel (MAT) in 2022, it has been a big task to disassemble and safely extract TBM Lady Eileen and reassemble her with new components before commissioning. The conveyor stacker, grout batch plant, and chiller plant were also relocated from the MAT portal to the Talbingo adit.

Before a TBM begins her journey underground, it is traditional for the machine and crew to be blessed for a safe journey under the watch of St Barbara, the patron saint of tunnelling and underground work. The tradition of blessing is acknowledged at tunnelling sites all over the world.

Local parish priest Father Mark Croker blessed the TBM at an onsite ceremony with many Snowy 2.0 workers in attendance. The machine was then switched on and began cutting the rock face. This is the fourth TBM launch for Snowy 2.0 and a major achievement for the Snowy Scheme expansion project.

TBM Construction Manager Derek Whelan manages all Snowy 2.0 tunnelling activities, as well as the TBM construction personnel. He was on-hand to run through Lady Eileen’s impressive components, including a new 378-tonne cutterhead.

The cutterhead is made up of 70 cutting discs each weighing 290 kilos that will excavate the varying geology of the 11-metre diameter tunnel. At 137 metres in length and weighing 2,300 tonnes, the TBM is a moving factory with many parts working together in a complex operation.

More than 27,000 concrete segments manufactured at the Polo Flat, Cooma, precast facility will be used to line the tailrace tunnel with the segment erector, segment feeder, segment cranes, and sophisticated grouting system all onboard the TBM.

The TBM is also equipped with a guidance system that provides data to the machine’s pilot, to the nearest millimetre. This information is mirrored above ground and monitored by Snowy 2.0’s construction and engineering teams. 

Snowy 2.0: Underpinning Australia’s transition to a renewable energy future

 

News

SNOWY 2.0 PROJECT UPDATE – JUNE 2023

26/06/2023

In the June update of the pumped-hydro expansion of the mighty Snowy Scheme, Snowy 2.0’s Alex Woschitzka explains construction progress at the massive Talbingo and Tantangara intakes. The project’s Quality Coordinator also checks in on the transformation of a narrow fire trail through steep terrain into a road suitable for heavy vehicles.

Significant progress has been made at the Talbingo intake, where water will exit the tailrace tunnel when Snowy 2.0 generates power. This is also where water enters the tunnel for pumping.

Construction teams have moved more than 310,000 cubic metres of earth to date, about half the total amount that will need to be moved. More than 24,000 metres of rock bolts have been installed and 8,300 square metres of shotcrete sprayed to support the wall.

As part of quality assurance, the shotcrete must be tested for compressive strength. Samples are taken from the truck and also cored from the face to ensure it meets the intended strength requirements. For the rock bolts, pull-testing is conducted to ensure they have been correctly installed, and meet the design and quality requirements. 

When completed, the total height of the Talbino intake excavation will be 104 metres, with about 31 metres of that below the water level. The concrete intake structure will be an impressive 50 metres in height.

Construction is well underway on an internal access road through mountainous terrain. With the help of Snowy 2.0 subcontractor Leed, a narrow fire trail will be widened into a six-kilometre road to enable heavy vehicles to access a rock emplacement area on Talbingo Reservoir.

Works began from both ends across very challenging terrain, achieving a major milestone recently when the two pioneering fronts joined across the Middle Creek cliffs. A temporary bridge with a 36-metre span has been installed across Middle Creek and is capable of supporting a fully-loaded 80-tonne dump truck.

In another milestone achieved in June, stage one earthworks have now been completed at the Tantangara intake. The first stage involved excavation of about 205,000 cubic metres of earth with a further 78,000 cubic metres of drilling and blasting earthworks expected in the next stage.

To support the excavation, more than 18,000 metres of rock bolts have been drilled and installed, and approximately 6,100 square metres of shotcrete sprayed. The excavation is currently about 26 metres deep and will be extended to a total depth of 55 metres.

Tantangara intake is where water will enter the headrace tunnel when the Snowy 2.0 power station is in generation mode. When in pumping mode, water will exit through the intake and fill Tantangara Reservoir. 

News

SNOWY 2.0 PROJECT UPDATE – MAY 2023

30/05/2023

May was a milestone month for the Snowy 2.0 team with the completion of the emergency, cable and ventilation tunnel, or ECVT – another vital step in the construction of Snowy Hydro’s new pumped-hydro expansion megaproject.

Snowy 2.0 senior project manager Rodd  Brinkmann explains the next stage of the project from his base at Lobs Hole, as preparation for excavation for the underground power station cavern gets underway.

The ECVT is a 2.93 kilometre tunnel that runs adjacent to the main access tunnel and provides alternate access to the site of the underground power station. Tunnel boring machine (TBM) Kirsten recently completed excavation of the ECVT and will soon start tunnelling the inclined pressure shaft. This very steep shaft links to the headrace tunnel from Tantangara Reservoir. 

TBM Kirsten will need to undergo modifications to excavate the 25-degree incline, including installation of a screw conveyor to extract excavated rock from the cutterhead to a sandwich conveyor system. With such a steep incline, construction of the 1.45km shaft with its concrete segment-lined tunnel, will be a world first. 

In the main access tunnel, or MAT, construction of cross passages and construction access tunnels is well underway with 850 metres of drill and blast tunnel excavation completed. Of the five cross passages linking the MAT and the ECVT, two are fully excavated and waiting on breakthrough into the ECVT.  Key construction tunnels are also being excavated to provide access to the machine hall, transformer hall and the top of the tailrace surge shaft. 

Workers have reached the main cavern areas from both ends and will soon commence excavation and support of the cavern crowns or ceilings of the power station halls. The excavation sequence of the cavern crowns is critical, as the in situ rock mass will relax and move inwards as the excavated void increases. These movements will be closely monitored during the process. Geotechnical drilling and plate load tests will measure and confirm the characteristics of the rock geology around the power station.

Dynamic 3D models of the power station caverns are also being used. 3D models are created using digital engineering to transform 2D design drawings and are displayed in the state-of-the-art immersive theatre at Snowy Hydro’s Discovery Centre in Cooma, where Snowy 2.0 engineers can collaborate with power station design experts from around the world. Once construction is complete, the detailed 3D models will be a valuable tool for asset maintenance. 

With so much activity in the tunnels, the current Snowy 2.0 underground workforce will increase by another 200 people in the coming months.  

News

SNOWY 2.0 PROJECT UPDATE – APRIL 2023

09/05/2023

In our April update of the Snowy 2.0 pumped-hydro project, Snowy Hydro CEO Dennis Barnes pays tribute to Alan Machon, who tragically died in a road accident. Alan was a member of the Future Generation team working to deliver Snowy 2.0.

Out onsite, Snowy 2.0 Integration Manager, Paul Smith, joins us from the recently completed Ravine Road, we meet the captain of the Lobs Hole Emergency Response Team and we stop by the Talbingo adit to check on progress of TBM Lady Eileen Hudson’s reassembly in readiness for her second major tunnelling task.

The construction of Ravine Road was one of the first projects undertaken for Snowy 2.0. Originally little more than a dirt track, the main access into the Lobs Hole site has been transformed to provide safe all-weather access for project trucks and light vehicles.

The steep, winding 15-kilometre road is now two lanes wide and in March 2023 it was fully sealed with line marking, snow poles and reflective markers installed to help guide road users in low visibility conditions. With an 850-metre elevation difference from top to bottom, the upper section of Ravine Road is above the snow line.

Areas disturbed during construction are being reinstated and the rehabilitation process is underway. When the Snowy 2.0 project is complete, the general public will be able to use Ravine Road to access a popular camping area once restricted to 4WD vehicles.

At the Talbingo adit, tunnel boring machine Lady Eileen Hudson is being reassembled in preparation for excavation of the tailrace tunnel. New components including the cutterhead and tailskin will soon be lifted into the TBM cradle to be attached to the shields and main drive. After completing the excavation of the main access tunnel, the TBM gantries were removed using self-propelled mobile transporters and will be attached to the machine so it can begin excavating the six-kilometre tunnel. The vertical conveyor belt stacker has been assembled, construction of the water treatment plant is progressing and the grout plant will soon be commissioned.

Snowy 2.0 emergency response teams, or ERTs, regularly conduct training to keep the onsite workforce safe and to prepare for possible emergencies such as vehicle rescues and bushfires.

Future Generation’s Lobs Hole ERT captain, Drew Butters, is a Snowy Mountains local who has worked on the project for three years. He has had a life-long association with emergency response and fire fighting in the Rural Fire Service and is currently the Adaminaby RFS captain.

ERTs are trained to deal with bushfires, general firefighting, emergency response and rescue. Emergency Response Teams have a small crew with experienced full-time members, plus a number of volunteers at each work site.