



## **REPORT**

# QUARTERLY ENVIRONMENTAL WATER REPORT SEPTEMBER 2023 TO NOVEMBER 2023

## S2-FGJV-ENV-REP-0094 REV B

#### DECEMBER 2024

This Report has been prepared to satisfy the reporting requirements in the Main Works – Water Management Plan (WMP) and to meet Condition of Approval (CoA) 31(c)(d) of the Infrastructure Approval Schedule which requires publicly available reporting of the outcomes of the WMP. The Report provides commentary on the performance of the monitoring programs as part of the WMP.

#### **Revision Record**

| В    | 16/12/2024 Issued for information |                  | C. Pedraza  | E. Porter   | D. Drummond |
|------|-----------------------------------|------------------|-------------|-------------|-------------|
| Rev. | Date                              | Reason for Issue | Responsible | Accountable | Endorsed    |





## **Document Verification**

## **RACIE Record**

| R responsible:    | Name: Carolina Pedraza  Job Title: Environmental Approvals Advisor |
|-------------------|--------------------------------------------------------------------|
|                   | Signed:                                                            |
|                   | Date: 16/12/2024                                                   |
| A ccountable:     | Name: Ellen Porter Job Title: Environment Manager  Signed:         |
|                   | Date: 17/12/2024                                                   |
| C onsulted:       | See distribution list on Page 3.                                   |
|                   |                                                                    |
| nformed:          | See distribution list on Page 3.                                   |
| <b>E</b> ndorsed: | Name: Dave Drummond Job Title: QHSE Director                       |
|                   | Signed: Julium                                                     |
|                   | Date: 17 Dec 24                                                    |

## **RACIE Terms**

| R | Responsible                                                                                         |
|---|-----------------------------------------------------------------------------------------------------|
| K | The person who actually produces the document.                                                      |
| Α | Accountable                                                                                         |
| А | The person who has the answer for success or failure of the quality and timeliness of the document. |
| С | Consulted                                                                                           |
| C | Those who must be consulted before the document is published.                                       |
|   | Informed                                                                                            |
| • | Those who must be informed after the document is published.                                         |
| _ | Endorsed                                                                                            |
| E | Those who must approve the document before publication.                                             |





## **Document Distribution Consulted Distribution List**

| Date | Format (1) | Addressee / Job Title | Company | Location (2 |
|------|------------|-----------------------|---------|-------------|
|      |            |                       |         |             |
|      |            |                       |         |             |
|      |            |                       |         |             |
|      |            |                       |         |             |
|      |            |                       |         |             |
|      |            |                       |         |             |
|      |            |                       |         |             |

## **Informed Distribution List**

| Date         | Format (1) | Addressee / Job Title | Company | Location (2) |
|--------------|------------|-----------------------|---------|--------------|
| January 2024 | OHC        | Central Archive       | FGJV    | Cooma        |
| January 2024 | EC         | Chris Buscall         | SHL     | Cooma        |
|              |            |                       |         |              |
|              |            |                       |         |              |
|              |            |                       |         |              |

NOTE: (1) OHC – Original Hard Copy / EC–Electronic Copy / HC – Hard Copy / Aconex – Electronic Document Management System

**Revision Tracking** 

| Rev. | Date       | Description of Revision         |
|------|------------|---------------------------------|
| Α    | 13/01/2024 | Issued for information          |
| В    | 16/12/2024 | Updated to address SHL comments |
|      |            |                                 |
|      |            |                                 |
|      |            |                                 |





## **CONTENTS**

| <b>ABB</b> | BREVIATIONS AND DEFINITIONS                                              | 5  |
|------------|--------------------------------------------------------------------------|----|
| 1.         | INTRODUCTION                                                             | 6  |
| 2.         | PURPOSE                                                                  | 6  |
| 3.         | OVERVIEW                                                                 | 7  |
| 3.1.       | Reporting period                                                         | 7  |
| 3.2.       | Construction progress                                                    | 7  |
| 4.         | WEATHER CONDITIONS                                                       | 8  |
| <b>5</b> . | SURFACE WATER MONITORING PROGRAM                                         | 9  |
| 5.1.       | Routine surface water quality monitoring                                 | 9  |
| 5.2.       | Event based monitoring                                                   | 9  |
| 6.         | GROUNDWATER MONITORING PROGRAM                                           | 10 |
| 6.1.       | Groundwater quality                                                      | 10 |
| 6.2.       | Groundwater levels                                                       | 11 |
| 6.3.       | Groundwater inflows                                                      | 11 |
| 7.         | TRENDS                                                                   | 12 |
| 8.         | CONCLUSION                                                               | 15 |
| APP        | PENDIX A – TREND ANALYSIS SUMMARY                                        | 16 |
| APP        | PENDIX B – BACKGROUND CONDITIONS                                         | 21 |
| APP        | PENDIX C – EPL WATER RESULTS                                             | 24 |
|            |                                                                          |    |
|            |                                                                          |    |
| TA         | BLE OF TABLES                                                            |    |
| Table      | le 2-1: Monitoring overview                                              | 6  |
|            | le 3-1: Key construction activities for 01 September to 30 November 2023 |    |
|            | le 4-1: Weather conditions for 01 September 2023 to 30 November 2023     |    |
|            | le 5-1: Design rainfall depths (SWMP Section 5.1.1)                      |    |
| Table      | la 6-1: Water access licence                                             | 11 |





## ABBREVIATIONS AND DEFINITIONS

| Acronym           | Definition                             |
|-------------------|----------------------------------------|
| AWS               | Automatic weather stations             |
| BoM               | Bureau of Meteorology                  |
| CoA               | Condition of Approval                  |
| ECVT              | Emergency Cable and Ventilation Tunnel |
| EPL               | Environmental Protection Licence       |
| Future Generation | Future Generation Joint Venture        |
| MAT               | Main Access Tunnel                     |
| MDB               | Murray Darling Basin                   |
| NEM               | National Electricity Market            |
| Snowy Hydro       | Snowy Hydro Limited                    |
| Snowy Scheme      | Snowy Mountains Hydro-electric Scheme  |
| SWMP              | Surface Water Management Plan          |
| TARP              | Trigger Action Response Plan           |
| TBM               | Tunnel Boring Machine                  |
| WMP               | Water Management Plan                  |
| WQO               | Water Quality Objectives               |





#### 1. INTRODUCTION

Snowy Hydro Limited (Snowy Hydro) is constructing a pumped hydro-electric expansion of the Snowy Mountains Hydro-electric Scheme (Snowy Scheme), called Snowy 2.0. Snowy 2.0 will be built by the delivery of two projects: Exploratory Works and Snowy 2.0 Main Works (which has commenced).

Snowy 2.0 is a pumped hydro-electric project that will link the existing Tantangara and Talbingo reservoirs through a series of new underground tunnels and a hydro-electric power station. Most of the project's facilities will be built underground, with approximately 27 kilometres of concrete-lined tunnels constructed to link the two reservoirs and a further 20 kilometres of tunnels required to support the facility. Intake and outlet structures will be built at both Tantangara and Talbingo Reservoirs.

Snowy 2.0 will increase the generation capacity of the Snowy Scheme by an additional 2,200 MW, and at full capacity will provide approximately 350,000 MWh of large-scale energy storage to the National Electricity Market (NEM). This will be enough to ensure the stability and reliability of the NEM, even during prolonged periods of adverse weather conditions.

WeBuild, Clough and Lane have formed the Future Generation Joint Venture (Future Generation) and have been engaged to deliver both Stage 2 of Exploratory Works and Snowy 2.0 Main Works.

## 2. PURPOSE

This Environmental Water Report has been prepared to satisfy the reporting requirements in the Main Works – Water Management Plan (WMP) and to meet Infrastructure Approval CSSI 9687 (CoA) Schedule 3, Condition 31(c)(d) which requires publicly available reporting of the outcomes of the WMP. The Environmental Water Report is intended to provide commentary on the performance of the monitoring programs as part of the WMP (identified in Table 2-1).

**Table 2-1: Monitoring overview** 

| Aspect                                                       | Objective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Surface Water Monitoring Program                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| Routine receiving surface water quality monitoring           | inform and assess the performance of management processes/measures that seek to minimise the Project's impact on surface water quality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| Event based wet weather overtopping water quality monitoring | <ul> <li>help determine source and extent of any water quality changes</li> <li>collect baseline data to characterise water quality and determine site specific values</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| Groundwater Monitoring Program                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| Groundwater level monitoring                                 | inform and assess the performance of management  Processes/management and processes/managem |  |  |  |  |  |  |
| Groundwater quality monitoring                               | <ul> <li>processes/measures that seek to minimise the Project's impact on<br/>regional and local (including alluvial) aquifers and GDEs</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| Water extraction monitoring                                  | inform and assess water consumption, site water balance and compliance with water access licences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |





## 3. OVERVIEW

## 3.1. Reporting period

This Environmental Water Report covers the monitoring period from 01 September to 30 November 2023.

## 3.2. Construction progress

Table 3-1 summarises the key construction activities which have been undertaken during the reporting period.

Table 3-1: Key construction activities for 01 September to 30 November 2023.

| Location              | Key construction activities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lobs Hole Ravine Road | <ul> <li>Asphalt laying of Ravine Road is completed. Signs and line marking<br/>remains.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Lobs Hole             | <ul> <li>Pad F – Training centre buildings completed.</li> <li>Fill and spoil processing is ongoing from D&amp;B tunnels to GF01.</li> <li>350mm tunnel dewatering pipeline works along the mine trail road works on hold FGJV working on ERS comments for IFC.</li> <li>Transgrid pad (Pad F7) extension works completed.</li> <li>Main precast shed erection completed, roofing completed and walls ongoing.</li> <li>ECVT- TBM 1 have installed a total of 1,460 permanent, completing ECVT01 tunnel and TBM1 modification works ongoing for IPS construction.</li> </ul> |
| Marica                | <ul> <li>Camp expansion, 3 buildings construction and commissioning completed.</li> <li>Marica Trail widening between CH0 – CH4700 ongoing.</li> <li>Road maintenance works are in progress.</li> <li>Weighbridge commissioning completed.</li> <li>Drain works ongoing at cut 6.</li> </ul>                                                                                                                                                                                                                                                                                 |
| Plateau               | <ul> <li>Along the highway cable pulling is ongoing and Fiber pits installation completed.</li> <li>HDD 01 completed, HDD02 ongoing.</li> <li>Road maintenance completed.</li> <li>Water Quality Monitoring ongoing.</li> </ul>                                                                                                                                                                                                                                                                                                                                              |
| Rock Forest           | NA – site under operational use as laydown area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Talbingo              | <ul> <li>Line drilling works are ongoing.</li> <li>Trail blasts completed.</li> <li>Stage 2 bench 1 excavation &amp; ground support is completed.</li> <li>Bench 3 excavation completed.</li> <li>Bench 5 excavation &amp; ground support ongoing.</li> <li>MC81 &amp; MC82 access road excavation and ground support ongoing.</li> <li>TBM 2.2 have installed 151 rings during the period, totaling 476 permanent rings.</li> </ul>                                                                                                                                         |
| Tantangara            | <ul> <li>Camp road, general maintenance works ongoing.</li> <li>Sink hole remediation works completed from Rig 1/Rig 2 and from the surface on top the TBM.</li> <li>Slurry Treatment Plant commissioning completed and ready to use.</li> <li>TBM conversion to closed mode completed and ready for mining.</li> <li>Pre-consolidation from TBM3 and surface completed.</li> <li>Environmental maintenance ongoing.</li> </ul>                                                                                                                                              |





#### 4. WEATHER CONDITIONS

There are several weather stations along the alignment of the project that report real-time data. These include:

- "Lobs Hole" which is an Automatic Weather Station managed by Future Generation in Lobs Hole construction site.
- "Cabramurra" an Automatic Weather Station located near the lookout in the Cabramurra township managed by the Bureau of Meteorology
- "Tantangara" an Automatic Weather Station managed by Future Generation in Tantangara construction site.

The Tantangara and Cabramurra gauges are in sub-alpine environments, with elevations of approximately 1220 m and 1475 m, respectively. Cabramurra records substantially higher annual rainfall amount than the lower-elevation gauges at Lobs Hole and Tantangara. Tantangara and Lobs Hole weather stations record actual onsite conditions at the respective construction sites, while Cabramurra weather station, at 1470 m is representative of conditions at Marica – which has an elevation of 1480 m and is approximately 15 km north of the Cabramurra Station.

A summary of climate data for the ravine and plateau areas is provided in Table 4.1

Table 4-1: Weather conditions for 01 September 2023 to 30 November 2023.

| Parameter            | Lobs Hole <sup>1</sup> |      | Mario | ica (Cabramurra) |       | Tantangara <sup>2</sup> |       |      |       |
|----------------------|------------------------|------|-------|------------------|-------|-------------------------|-------|------|-------|
|                      | Sep                    | Oct  | Nov   | Sep              | Oct   | Nov                     | Sep   | Oct  | Nov   |
| Temperature          |                        |      |       |                  |       |                         |       |      |       |
| Mean<br>maximum      | 19.5                   | 20.1 | 24.5  | 12.4             | 12.0  | 17.0                    | 16.6  | 16.8 | 21.7  |
| Mean<br>minimum      | 3.3                    | 5.3  | 9.5   | 4.3              | 4.1   | 7.9                     | -0.04 | 2.3  | 6.4   |
| Rainfall             |                        |      |       |                  |       |                         |       |      |       |
| Monthly              | 26.4                   | 89.2 | 121.4 | 31.4             | 113.4 | 141.2                   | 43.8  | 89.6 | 129.8 |
| Long Term<br>Average | 90.0                   | 95.2 | 77.0  | 120.0            | 109.4 | 122.9                   | 60.1  | 67.8 | 58.9  |

<sup>1.</sup> Lobs Hole long term average rainfall is taken from the Tumbarumba weather station.

During the fourth quarter 2023, there was greater than average rainfall for Marica (Cabramurra) and Tantangara with respect to the long- term average for October, and November, and greater than average rainfall for Lobs Hole in November. There was less than average rainfall for Lobs Hole during September and October, and less than average rainfall for September at Marica (Cabramurra) and Tantangara (Table 4.1). La Nina conditions were officially reported to have ended in March 2023, however the seasonal variation contributed to the rainfall at all locations.

<sup>2.</sup> Tantangara long term average rainfall is taken from the Adaminaby Alpine Tourist Park weather station.





#### 5. SURFACE WATER MONITORING PROGRAM

## 5.1. Routine surface water quality monitoring

Routine surface water quality monitoring is undertaken in accordance with CoA31 and the Environment Protection Licence No. 21266 (EPL - 21266) to determine if the project is resulting in any impacts to receiving water quality against the Water Quality Objectives (WQO). The WQOs are specified in Table 2-2 of the Main Works – Surface Water Monitoring Program.

Publicly available surface water quality monitoring results undertaken in accordance with EPL - 21266 can be accessed <u>here</u>.

There were several occasions where EPL monitoring results at Rock Forest, Tantangara, Marica and Lobs Hole exceeded the Water Quality Objectives. There were a number of minor elevations in metals in surface water across the sites which were within historical ranges and are similar to background (See Appendix C for reference) concentrations in the respective locations. There were concentrations of Dissolved Oxygen for many EPL's outside of the water quality criteria possibly due to changes in temperature and fluctuations of naturally occurring bacteria. Minor exceedances of EC and pH were generally within background ranges for the reported period (See Appendix C for reference). There were also exceedances in nutrients, including Ammonia, Total Nitrogen, and Nitrite+Nitrate, especially around the spoil emplacement area, which are being further investigated. Water at EPL55 and EPL52 is being collected and treated on-site at a process water treatment plant.

Exceedances in Iron and Copper are naturally occurring in the area which is mentioned in the EIS background information as follows: "Copper, iron, lead and zinc concentrations exceeded WQO values on an occasional basis. Other metals are generally below WQO values" (See appendix C for reference).

While water was being discharged to Talbingo and Tantangara reservoirs generally over the reporting period, On 17/09/2023, 14/10/2023 and 19/11/2024, the EPL 41 was sampled with a comprehensive round, which included all the parameters requested for the point according to the EPL 21266; most parameters were within the WQO except for turbidity (November), Aluminium and Zinc, which is aligned with the background conditions (See Appendix B), which state the following:

"All dissolved metal concentrations were below WQO values except for:

- copper and zinc concentrations exceeded WQO values frequently in summer/autumn and occasionally in winter/spring; and
- chromium (total) and lead concentrations occasionally exceeded WQO values in summer/a utumn. It is noted that all but one of the copper and zinc exceedances occurred during Mar ch 2018 sampling, where 80% of samples exceeded the WQO values. Different analysis m ethods (consistent with the methods applied more broadly to EIS sampling) were applied to subsequent sampling (post-March 2018)"

Further, exceedances of the WQO were identified at the reservoir EPL locations however there is no evidence that the source of exceedances originate from the final discharge points at the RO plants. Samples were taken at other discharge areas around site to determine the location or source of nutrient and metal accumulation.

## 5.2. Event based monitoring

Event based wet weather overtopping water quality monitoring is undertaken in accordance with the SWMP Trigger Action Response Plan (TARP 2) to monitor stormwater overtopping sediment basin





discharges. Sediment basins for the Project have been designed to meet the design rainfalls depths identified in Table 5-1.

Table 5-1: Design rainfall depths (SWMP Section 5.1.1)

| Catchment                        | Description                                                                  | 85 <sup>th</sup> percentile,<br>5-day rainfall<br>(mm) | 90 <sup>th</sup> percentile,<br>5-day rainfall<br>(mm) | 95 <sup>th</sup> percentile,<br>5-day rainfall<br>(mm) |
|----------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| Yarrangobilly<br>River           | Surface works at Lobs Hole and Marica                                        | 28.1                                                   | 35.6                                                   | 49.0                                                   |
| Upper Eucumbene<br>River         | Surface works between<br>Marica and the Snowy<br>Mountain Highway            | 35.2                                                   | 43.4                                                   | 56.9                                                   |
| Tantangara construction compound | Surface works adjacent to<br>the southern portion of<br>Tantangara Reservoir | 30.5                                                   | 37.0                                                   | 51.0                                                   |
| Goorudee Rivulet                 | Surface works at Rock<br>Forest                                              | 20.0                                                   | 25.7                                                   | 36.1                                                   |

During the reporting period, rainfall exceeded the design rainfall criteria four times, including:

- 2-6 October (63.4 mm Lobs Hole, 57.6 mm Tantangara, 58.4 mm Marica)
- 13-17 October (54.4 mm Tantangara)
- 6-10 November (30.2 mm Lobs Hole)
- 25-29 November (62.0 mm Lobs Hole, 56.4 mm Tantangara, 66.4 mm Marica)

Across the sites, water quality results of upstream and downstream were generally consistent following significant rainfall events where turbidity, electrical conductivity, dissolved oxygen, and pH frequently exceeded the WQO. However, most other water quality parameters were within the WQO It is identified in the Surface Water Management Plan that during periods of wet weather, the WQO are frequently exceeded. Water samples were collected for comprehensive water testing and the EPA were notified of the releases in accordance with R4.1 of EPL 21266. During discharge there were some turbidity exceedances downstream. There was also high DO upstream and downstream. However, most were within the WQO parameters.

## 6. GROUNDWATER MONITORING PROGRAM

#### 6.1. Groundwater quality

Groundwater quality monitoring is undertaken in accordance with EPL - 21266 to determine if the project is resulting in any impacts to groundwater. Groundwater quality trigger levels for the Project are outlined in Table C-1 of the Main Works – Groundwater Monitoring Program.

Publicly available groundwater quality monitoring results undertaken in accordance with EPL - 21266 can be accessed <u>here</u>.

In this reporting period there were further groundwater sample collected at the GF01 spoil emplacement area and Main Yard area in accordance with the Leachate Detection Procedure. Groundwater samples were collected at 16 locations across the Project. Elevated concentrations of nutrients and metal concentrations were observed in groundwater. EPL 56 and 57, located at the





GF01, have been purged and monitored weekly with in situ parameters. The current well will be redrilled and old well decommissioned.

The metals exceedances for EPL1, EPL2, EPL4, and EPL25 are representative of natural conditions as these metals occur naturally within the Project area. The iron exceedance at EPL25 remains consistent with previous quarterly results. The wells measuring the shallow aquifer (EPL 56, 57, 58, 68 and 69), which are located in the spoil emplacement area (GF01) at Lobs Hole and Tantangara are more likely to see higher nutrient exceedances as nutrients likely leach through the soil into the aquifer during rainfall. The GF01 groundwater bores were sampled throughout the reporting period from September to November 2023 to collect data on the well's water quality and monitor any impact from the spoil emplacement. From the Data collected, it was observed that Nitrogen, Nitrates and Nitrites increased. FGJV started an investigation and installed new sampling points (EPL 70, EPL 72, EPL 73, EPL 80, EPL 81, EPL 82 and EPL 83).

#### 6.2. Groundwater levels

Groundwater level monitoring is undertaken in accordance with the Groundwater monitoring program to determine groundwater drawdown as a result from the Project.

Site specific groundwater level triggers as outlined in Attachment B of the Main Works – Groundwater Monitoring Program have been established to monitor whether observed drawdown is greater than construction related predicted drawdown.

SHL is monitoring the groundwater levels via telemetry.

#### 6.3. Groundwater inflows

Groundwater inflow into the tunnels is monitored during construction. This data is required to monitor the volume of extracted groundwater against water access licence limits (Table 6-1).

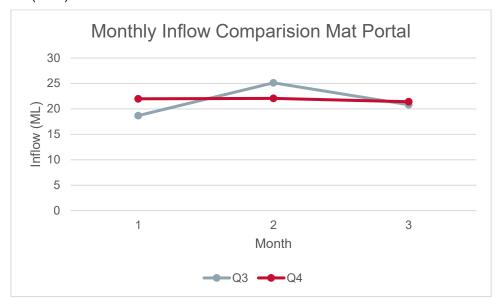
Table 6-1: Water access licence

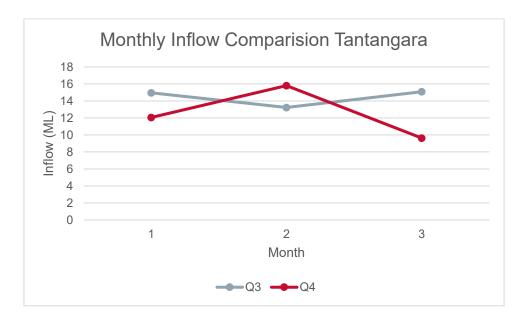
| Water Access Licence                       | Project           | Water Source                  | Share (ML) |
|--------------------------------------------|-------------------|-------------------------------|------------|
| WAL42407 – Specific Purpose Access Licence | Exploratory Works | Upper Tumut water source      | 227        |
| WAL42408 – Groundwater Licence             | Exploratory Works | Lachlan Fold Belt MDB         | 0          |
| WAL42960 – Groundwater Licence             | Exploratory Works | Lachlan Fold Belt MDB         | 354        |
| RO13-19-093 – via Controlled Allocation    | Main Works        | Lachlan Fold Belt MDB         | 3,375      |
| RO1-19-092 – via Controlled Allocation     | Main Works        | Lachlan Fold Belt South Coast | 1,722      |
| Specific Purpose Access Licence            | Main Works        | Tantangara Water Source       | 532        |

The monthly inflows for the Construction Water Treatment Plant (CWTP) at the Main Access Tunnel (MAT) Portal are as follows:

- September 21.97 ML
- October 22.06 ML
- November 21.40 ML

The monthly inflows for the Construction Water Treatment Plant (CWTP) at Tantangara are as follows:


September 12.06 ML






- October 15.80 ML
- November 9.63 ML

Groundwater inflows in September, October, and November 2023 were similar to those in the previous quarter. The inflows at the MAT portal increased by 3ML in the second month of the quarter, likely due to the volume of drill and blast works occurring. Shotcreting of these tunnels after blasting to minimise inflows is undertaken in accordance with relevant procedures. The Tantangara inflows were less (2ML) during the first month, increased (2.5ML) in the second month and decreased (6ML) in the last month.





#### 7. TRENDS

The Mann-Kendall statistical analysis test has been chosen to assess trends within surface water monitoring data over the 3-month reporting period. Mann-Kendall is non-parametric test that assesses monotonic trends over time; identified as increasing, decreasing, or showing no





significant trend. This test has been selected because it does not assume a specific distribution of the data and is robust against outliers, making it suitable for environmental datasets that may exhibit non-normal behaviour.

In instances where the Mann-Kendall analysis has been inconclusive due to insufficient data (less than 8 data points), a comparison of key general statistics has been undertaken, including an evaluation of mean, standard deviation, minimum, and maximum values. This comparative analysis has allowed for an assessment of construction monitoring data and whether it falls within the ranges identified in pre-project, baseline data. When calculating the mean value, non-detects have been considered as the detection limit value, rather than half the detection limit value, for a conservative output and thus the mean results in this Report are biased to a higher value.

Detailed Mann-Kendall trend analysis and metric summaries are provided in Appendix A. For each monitoring location, a summary of trends, mean, minimum, maximum and standard deviation is provided.

#### Surface water

The following decreasing trends were identified:

- Aluminium EPL 10, 11, 12, 14, 15, 16, 26, 27, 28, 29, 30, 31, 32, 34, 35, 38, 39, 40, and 41
- Arsenic EPL 41, 50 and 51
- Chromium III + IV EPL 41, 50, 51, 52 and 55
- Copper EPL 52
- Iron EPL 10, 12, 14, 16, 24, 29, 30, 32, 33, 35, 36, 41, 50, 52
- Manganese EPL 5, 6, 8, 9, 12, 14, 15, 16, 33, 34, 35, 36, 37, 41, 50, 52 and 55
- Nickel EPL 36, 37, 41, 50, 51, 52 and 55
- Lead EPL 41, 50, 51, 52 and 55
- Silver EPL 41, 50, 51, 52 and 55
- Zinc EPL 51, 52 and 55
- Ammonia 37, 41, 52 and 55
- Cyanide EPL 41
- Kjeldahl Nitrogen EPL 41 and 52
- Nitrate + Nitrite EPL 41, 50 and 52
- Nitrogen EPL 41 and 52
- Total Phosphorus EPL 8, 9, 41, 52 and 55
- Hardness EPL 28
- Total suspended solids EPL 5, 8, 9, 10, 11, 12, 14, 16 and 31
- Oil and Grease EPL 10,11, 12, 14, 16, 24, 31, 33, 35, 36, 37, 41, 50, 51, 52 and 55

The following increasing trends were identified:

- Arsenic EPL 5, 6, 8, 9, 26, 27, 28, 30, 31, 36, 52 and 55
- Chromium III + IV EPL 5, 6, 8, 9, 10, 11, 12, 15, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37 and 38





- Copper EPL 6, 26, 27, 28, 29, 30 and 32
- Iron EPL 51
- Manganese EPL 40
- Nickel EPL 5, 6, 8, 9, 11, 12, 14, 16, 26, 27, 28, 29, 30, 31, 32, 34 and 38
- Lead EPL 5, 6, 8, 9, 10, 11, 12, 15, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38 and
   41
- Silver EPL 5, 6, 8, 9, 10, 11, 12, 15, 24, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36 and 38
- Zinc EPL 5, 6, 8, 9, 11, 12, 15, 24, 26, 27, 28, 29, 30, 32, 34, 36 and 37
- Ammonia EPL 27 and 51
- Kjeldahl Nitrogen EPL 27 and 51
- Nitrate + Nitrite EPL 10, 11, 24, 26, 28, 29, 30, 31, 32, 34, 36, 37, 38, 39 and 40
- Nitrogen EPL 12, 24, 27, 39 and 51
- Total Phosphorus EPL31, 35 and 40
- Reactive Phosphorus EPL 29, 32, 39 and 51
- Hardness EPL 6, 12, 14, 15, 16, 24, 30 and 41
- Total suspended solids EPL 36 and 37

#### Groundwater

The following decreasing trends were identified:

- Aluminium EPL 56, 57 and 58
- Arsenic EPL 56
- Chromium III + IV EPL 56, 57 and 58
- Copper EPL 56, 57 and 58
- Iron EPL 1, 56, 57 and 58
- Lead EPL 56, and 57
- Manganese EPL 1, 56 and 57
- Nickel EPL 25, 56 and 57
- Silver EPL 58
- Zinc EPL 57 and 58
- Ammonia EPL 56, 57 and 58
- Kjeldahl Nitrogen EPL 56 and 67
- Nitrate + Nitrite EPL 56
- Nitrogen EPL 56 and 57
- Total Phosphorus EPL 56, 57 and 58
- Hardness EPL 58





Total Suspended solids – EPL 57

The following increasing trends were identified:

- Copper EPL 2
- Lead EPL 2
- Manganese EPL 58
- Silver EPL 1 and 2
- Zinc EPL 2 and 4
- Nitrogen EPL 2 and 4

## 8. CONCLUSION

EPL monitoring results that exceeded the WQO are consistent with natural events such as rainfall and changes in seasonal weather. Background monitoring in the previous quarter has similar readings that display exceedances of particular analytes. Exceedances of the water quality objectives for nutrients and metals are likely due to high rainfall, and naturally occurring concentrations in soils leaching into the waterways. The SWMP, outlines background studies that indicate frequent exceedances of the WQO occurring within all surface waters across the project. There has also been exceedances of nitrogen and Iron, that have been investigated to find sources and find a way to lower levels. Updates will be provided in the next quarterly report and corrective actions are being developed and implemented in the interim. As Q4 2023 displayed some exceedances, the EPL's will be monitored to investigate the root cause of these increased levels.

Across the sites, water quality results display increasing turbidity from overtopping downstream. However, this is a natural and common occurrence found in basin overtopping due to rainfall. Other analyte readings such as electrical conductivity and pH were consistent with naturally occurring conditions during wet weather, as outlined in the SWMP.

Groundwater results from the wells across project had exceedances in Iron and Nitrogen. Shallower wells (EPL1 and EPL25) are more likely to see higher nutrient exceedances and are likely a result of natural influences from historical sources such as decomposing plant material. The nutrient exceedances fall within standard variation for these wells with no evidence of impacts to Yarrangobilly River. Results of the GF01 groundwater Displayed high metal levels of zinc, copper, and chromium. GF01 and Main Yard displayed consistently high levels of nitrogen which has resulted in a TARP. An investigation into the source of nitrogen increase will help to find a method or solution to better treat any.





## APPENDIX A – TREND ANALYSIS SUMMARY

|          |         |         |        | Aluminiu | m                    |        |        | Arsenic | N                    |         | Chrom  | ium III + IV | (filtered)          |        | Сор    | per (filter | ed)                 |          |          | Iron (dissol | lved)    |                |          | Mang   | ganese (dis | solved)               |
|----------|---------|---------|--------|----------|----------------------|--------|--------|---------|----------------------|---------|--------|--------------|---------------------|--------|--------|-------------|---------------------|----------|----------|--------------|----------|----------------|----------|--------|-------------|-----------------------|
| Location | Site ID | Mean    | Min    | Max      | StdDv MK Trend       | Mean   | Min    | Max     | StdDv MK Trend       | Mean    | Min    | Max          | StdDv MK Trend      | Mean   | Min    | Max         | StdDv MK Trend      | Mean     | Min      | Max          | StdDv    | MK Trend       | Mean     | Min    | Max         | StdDv MK Trend        |
|          | 5       | 80.26   | 6.00   | 408.00   | 92.27 Insufficient   | 0.6970 | 0.2000 | 1.1000  | 0.3410 Increasing    | 1.8280  | 0.2000 | 35.0000      | 6.3920 Increasing   | 0.9280 | 0.5000 | 3.4000      | 0.5710 Insufficier  | 87.4800  | 1.0000   | 699.0000     | 124.5000 | nsufficient    | 8.2100   | 0.5000 | 95.2000     | 16.9200 Decreasing    |
|          | 6       | 36.39   | 5.00   | 170.00   | 40.53 Insufficient   | 0.64   | 0.20   | 1.00    | 0.37 Increasing      | 1.1760  | 0.2000 | 18.0000      | 3.2600 Increasing   | 0.8410 | 0.5000 | 3.6000      | 0.6400 Increasing   | 51.5900  | 6.0000   | 292.0000     | 50.6400  | nsufficient    | 9.8380   | 1.5000 | 24.9000     | 6.7340 Decreasing     |
|          | 8       | 50.88   | 2.00   | 189.00   | 50.56 Insufficient   | 0.7500 | 0.2000 | 1.0000  | 0.3340 Increasing    | 1.0200  | 0.2000 | 14.0000      | 2.4820 Increasing   | 1.2330 | 0.5000 | 10.5000     | 1.8070 Insufficier  | 64.0000  | 11.0000  | 384.0000     | 67.0400  | nsufficient    | 7.9670   | 1.0000 | 60.2000     | 11.4600 Decreasing    |
|          | 9       | 36.43   | 6.00   | 496.00   | 99.96 Insufficient   | 0.6790 | 0.2000 | 1.1000  | 0.3570 Increasing    | 1.0930  | 0.2000 | 14.0000      | 2.5130 Increasing   | 1.0690 | 0.5000 | 4.0000      | 0.8040 Insufficier  | 73.5900  | 11.0000  | 748.0000     | 131.1000 | nsufficient    | 7.8760   | 1.6000 | 61.3000     | 10.7200 Decreasing    |
|          | 12      | 86.22   | 5.00   | 466.00   | 110.90 Decreasing    | 0.6970 | 0.2000 | 1.1000  | 0.3540 Insufficient  | 0.7920  | 0.2000 | 6.0000       | 0.9470 Increasing   | 1.1890 | 0.5000 | 12.0000     | 1.8560 Insufficier  | 93.3700  | 1.0000   | 670.0000     | 127.1000 | Decreasing     | 9.0680   | 0.6000 | 94.7000     | 18.7300 Decreasing    |
|          | 14      | 68.47   | 5.00   | 590.00   | 123.70 Decreasing    | 0.6750 | 0.2000 | 1.1000  | 0.3600 Insufficient  | 0.7180  | 0.2000 | 4.0000       | 0.6590 Insufficient | 0.9580 | 0.5000 | 3.7000      | 0.6570 Insufficier  | 81.9000  | 9.0000   | 756.0000     | 136.0000 | Decreasing     | 7.9150   | 0.7000 | 81.1000     | 14.4000 Decreasing    |
| Lobbs    | 15      | 67.78   | 6.00   | 490.00   | 95.33 Decreasing     | 0.6970 | 0.2000 | 1.1000  | 0.3540 Insufficient  | 0.6870  | 0.2000 | 2.0000       | 0.4370 Increasing   | 1.1740 | 0.5000 | 7.4000      | 1.3900 Insufficier  | 81.2400  | 1.0000   | 780.0000     | 126.8000 | Decreasing     | 7.6030   | 1.0000 | 66.7000     | 12.2600 Decreasing    |
| Hole     | 16      | 48.03   | 6.00   | 357.00   | 63.01 Decreasing     | 0.6780 | 0.2000 | 1.0000  | 0.3550 Insufficient  | 0.6700  | 0.2000 | 2.0000       | 0.4930 Insufficient | 1.1580 | 0.5000 | 5.0000      | 1.0120 Insufficier  | 63.5000  | 4.0000   | 587.0000     | 89.1300  | Decreasing     | 6.2600   | 1.3000 | 58.8000     | 8.8500 Decreasing     |
|          | 24      | 1001.00 | 5.00 3 | 30000.00 | 5292.00 Insufficient | 0.6320 | 0.2000 | 1.0000  | 0.3890 Insufficient  | 0.7650  | 0.2000 | 4.0000       | 0.7740 Increasing   | 1.0650 | 0.5000 | 4.0000      | 0.8620 Insufficier  | 93.9500  | 2.0000   | 230.0000     | 68.0600  | Decreasing     | 224.4000 | 7.0000 | **********  | 371.1000 Insufficient |
|          | 52      | 19.67   | 5.00   | 67.00    | 16.10 Insufficient   | 0.79   | 0.40   | 1.30    | 0.26 Increasing      | 7.09    | 3.30   | 29.00        | 5.05 Decreasing     | 1.4350 | 0.5000 | 9.0000      | 2.2560 Decreasin    | 11.0400  | 2.0000   | 50.0000      | 17.9000  | Decreasing     | 2.1420   | 0.5000 | 8.8000      | 2.5350 Decreasing     |
|          | 53      | 39.00   | 20.00  | 58.00    | 26.87 Deficient valu | 0.60   | 0.20   | 1.00    | 0.57 Deficient value | 0.65    | 0.30   | 1.00         | 0.50 Deficient val  | 3.6500 | 2.3000 | 5.0000      | 1.9090 Deficient    | 52.5000  | 50.0000  | 55.0000      | 3.5360   | Deficient valu | 0.8500   | 0.7000 | 1.0000      | 0.2120 Deficient va   |
|          | 54      | 11.00   | 10.00  | 12.00    | 1.41 Deficient valu  | 0.60   | 0.20   | 1.00    | 0.57 Deficient value | 0.65    | 0.30   | 1.00         | 0.50 Deficient val  | 0.7500 | 0.5000 | 1.0000      | 0.3540 Deficient    | 31.0000  | 12.0000  | 50.0000      | 26.8700  | Deficient valu | 0.7500   | 0.5000 | 1.0000      | 0.3540 Deficient val  |
|          | 55      | 37.27   | 5.00   | 500.00   | 106.00 Insufficient  | 0.39   | 0.20   | 1.00    | 0.32 Insufficient    | 1.20    | 0.20   | 4.00         | 1.04 Decreasing     | 0.9640 | 0.5000 | 3.0000      | 0.7610 Insufficier  | 56.6700  | 2.0000   | 489.0000     | 115.9000 | nsufficient    | 7.1450   | 0.5000 | 88.0000     | 18.9000 Decreasing    |
| Mandan   | 26      | 16.41   | 5.00   | 44.00    | 10.68 Decreasing     | 0.6400 | 0.2000 | 1.0000  | 0.4030 Increasing    | 0.6680  | 0.2000 | 2.0000       | 0.4510 Increasing   | 0.7750 | 0.5000 | 1.0000      | 0.2520 Increasing   | 41.4500  | 2.0000   | 99.0000      | 17.9400  | nsufficient    | 5.0100   | 1.2000 | 19.0000     | 3.2910 Insufficient   |
| Marica   | 27      | 14.41   | 5.00   | 32.00    | 8.79 Decreasing      | 0.6200 | 0.2000 | 1.0000  | 0.4050 Increasing    | 0.6800  | 0.2000 | 3.0000       | 0.5440 Increasing   | 0.7700 | 0.5000 | 1.0000      | 0.2490 Increasing   | 41.1000  | 10.0000  | 94.0000      | 16.5400  | nsufficient    | 4.2930   | 1.0000 | 12.0000     | 2.1190 Insufficient   |
|          | 28      | 50.77   | 6.00   | 171.00   | 40.83 Decreasing     | 0.6430 | 0.2000 | 1.0000  | 0.3940 Increasing    | 0.6860  | 0.2000 | 2.0000       | 0.5070 Increasing   | 0.8300 | 0.5000 | 2.0000      | 0.3730 Increasing   | 150.6000 | 34.0000  | 380.0000     | 101.0000 | nsufficient    | 13.0900  | 0.8000 | 68.0000     | 14.8000 Insufficient  |
|          | 29      | 50.58   | 15.00  | 110.00   | 25.40 Decreasing     | 0.6470 | 0.2000 | 1.0000  | 0.3820 Insufficient  | 0.6500  | 0.2000 | 2.0000       | 0.4620 Increasing   | 0.8750 | 0.5000 | 3.0000      | 0.5260 Increasing   | 164.3000 | 48.0000  | 404.0000     | 102.9000 | Decreasing     | 13.5300  | 1.1000 | 111.0000    | 23.1500 Insufficient  |
|          | 30      | 45.47   | 10.00  | 154.00   | 38.09 Decreasing     | 0.6110 | 0.2000 | 1.0000  | 0.4050 Increasing    | 0.6380  | 0.2000 | 2.0000       | 0.4610 Increasing   | 0.8350 | 0.5000 | 3.4000      | 0.5000 Increasing   | 63.7300  | 2.0000   | 127.0000     | 26.8000  | Decreasing     | 4.4620   | 0.5000 | 11.0000     | 2.1260 Insufficient   |
|          | 31      | 44.66   | 10.00  | 150.00   | 33.54 Decreasing     | 0.6110 | 0.2000 | 1.0000  | 0.4050 Increasing    | 0.6920  | 0.2000 | 3.0000       | 0.6010 Increasing   | 0.8570 | 0.5000 | 2.1000      | 0.4020 Insufficier  | 61.4900  | 15.0000  | 189.0000     | 31.8000  | nsufficient    | 4.5730   | 0.9000 | 16.8000     | 3.0140 Insufficient   |
|          | 32      | 50.37   | 10.00  | 91.00    | 24.80 Decreasing     | 0.6670 | 0.2000 | 1.0000  | 0.3810 Insufficient  | 0.6720  | 0.2000 | 2.0000       | 0.4590 Increasing   | 0.8330 | 0.5000 | 2.0000      | 0.3780 Increasing   | 17.0000  | 42.0000  | 392.0000     | 104.1000 | Decreasing     | 13.5900  | 0.9000 | 127.0000    | 23.4900 Insufficient  |
| Tantanga | 33      | 51.16   | 5.00   | 290.00   | 51.90 Insufficient   | 0.6640 | 0.2000 | 1.0000  | 0.3720 Insufficient  | 0.6500  | 0.2000 | 2.0000       | 0.4620 Increasing   | 1.0000 | 0.5000 | 4.0000      | 0.6820 Insufficier  | 224.8000 | 45.0000  | 966.0000     | 195.7000 | Decreasing     | 28.7700  | 1.0000 | 280.0000    | 50.8600 Decreasing    |
| rantanga | 34      | 39.93   | 14.00  | 120.00   | 20.93 Decreasing     | 0.6490 | 0.2000 | 1.0000  | 0.3910 Insufficient  | 0.6340  | 0.2000 | 1.0000       | 0.4040 Increasing   | 0.8370 | 0.5000 | 2.0000      | 0.3620 Insufficier  | 155.8000 | 22.0000  | 420.0000     | 126.6000 | nsufficient    | 6.2170   | 2.3000 | 37.0000     | 5.6640 Decreasing     |
| 10       | 35      | 36.84   | 5.00   | 77.00    | 19.51 Decreasing     | 0.6500 | 0.2000 | 1.0000  | 0.3850 Insufficient  | 0.6830  | 0.2000 | 3.0000       | 0.5600 Increasing   | 0.8530 | 0.5000 | 2.7000      | 0.4510 Insufficier  | 161.1000 | 2.0000   | 450.0000     | 133.4000 | Decreasing     | 5.8920   | 2.0000 | 26.7000     | 4.4340 Decreasing     |
|          | 38      | 56.28   | 17.00  | 240.00   | 42.67 Decreasing     | 0.6710 | 0.2000 | 1.0000  | 0.3860 Insufficient  | 0.6570  | 0.2000 | 1.0000       | 0.4020 Increasing   | 1.2170 | 0.5000 | 7.3000      | 1.5460 Insufficier  | 170.9000 | 43.0000  | 420.0000     | 112.9000 | Decreasing     | 11.8500  | 0.9000 | 142.0000    | 24.2000 Insufficient  |
|          | 39      | 40.18   | 10.00  | 110.00   | 25.47 Decreasing     | 0.6710 | 0.2000 | 1.0000  | 0.4000 Insufficient  | 0.6740  | 0.2000 | 1.0000       | 0.3960 Insufficient | 0.8350 | 0.5000 | 2.0000      | 0.3180 Insufficier  | 121.1000 | 26.0000  | 320.0000     | 80.9400  | nsufficient    | 8.4150   | 1.1000 | 25.0000     | 5.1860 Insufficient   |
|          | 40      | 39.54   | 9.00   | 116.00   | 26.81 Decreasing     | 0.6710 | 0.2000 | 1.0000  | 0.4000 Insufficient  | 0.6710  | 0.2000 | 1.0000       | 0.4000 Insufficient | 0.8060 | 0.5000 | 1.0000      | 0.2410 Insufficier  | 98.9100  | 21.0000  | 230.0000     | 60.1500  | nsufficient    | 6.4740   | 0.9000 | 28.0000     | 4.9860 Increasing     |
|          | 50      | 6.73    | 5.00   | 21.00    | 4.32 Insufficient    | 0.7330 | 0.2000 | 1.0000  | 0.3900 Decreasing    | 0.8000  | 0.2000 | 2.0000       | 0.5070 Decreasing   | 0.9000 | 0.5000 | 2.0000      | 0.3870 Insufficier  | 36.2900  | 2.0000   | 50.0000      | 22.5000  | Decreasing     | 2.9670   | 0.5000 | 5.0000      | 2.2560 Decreasing     |
|          | 51      | 46.53   | 15.00  | 102.00   | 25.28 Insufficient   | 0.7330 | 0.2000 | 1.0000  | 0.3900 Decreasing    | 0.7330  | 0.2000 | 1.0000       | 0.3900 Decreasing   | 0.9600 | 0.5000 | 2.4000      | 0.4580 Insufficier  | 141.6000 | 60.0000  | 340.0000     | 88.1500  | ncreasing      | 15.3000  | 1.0000 | 69.0000     | 22.9500 Insufficient  |
| Rock     | 36      | 89.91   | 23.00  | 279.00   | 60.69 Insufficient   | 0.7220 | 0.2000 | 1.0000  | 0.3210 Increasing    | 0.7080  | 0.2000 | 2.0000       | 0.4150 Increasing   | 0.9000 | 0.5000 | 2.4000      | 0.4380 Insufficier  | 438.4000 | 133.0000 | ######       | 282.2000 | nsufficient    | 23.1500  | 3.6000 | 87.5000     | 24.7900 Decreasing    |
| Forest   | 37      | 93.61   | 5.00   | 290.00   | 71.93 Insufficient   | 0.7810 | 0.2000 | 1.0000  | 0.3130 Insufficient  | 0.7620  | 0.2000 | 3.0000       | 0.5110 Increasing   | 0.8490 | 0.5000 | 2.0000      | 0.2940 Insufficier  | 494.4000 | 18.0000  | ######       | 369.1000 | nsufficient    | 20.3500  | 3.2000 | 142.0000    | 25.1800 Decreasing    |
|          | 10      | 33.54   | 5.00   | 197.00   | 39.38 Decreasing     | 0.6880 | 0.2000 | 1.0000  | 0.3500 Insufficient  | 0.8020  | 0.2000 | 8.0000       | 1.2190 Increasing   | 1.0610 | 0.5000 | 4.0000      | 0.8640 Insufficier  | 47.6300  | 8.0000   | 100.0000     | 22.1500  | Decreasing     | 11.0500  | 0.7000 | 122.0000    | 21.7100 Insufficient  |
| Talbingo | 11      | 30.71   | 5.00   | 195.00   | 37.95 Decreasing     | 0.6780 | 0.2000 | 1.0000  | 0.4600 Insufficient  | 0.8150  | 0.2000 | 6.0000       | 0.9860 Increasing   | 1.3200 | 0.5000 | 9.0000      | 1.5270 Insufficier  | 46.7800  | 8.0000   | 98.0000      | 21.9000  | nsufficient    | 9.6800   | 0.6000 | 104.0000    | 19.1100 Insufficient  |
|          | 41      | 394.50  | 5.00   | 3900.00  | 912.20 Decreasing    | 1.0860 | 0.2000 | 11.0000 | 1.8250 Decreasing    | 39.6800 | 0.2000 | 400.0000     | 95.3100 Decreasing  | 6.5450 | 0.5000 | 76.0000     | 13.4000 Insufficier | 75.8600  | 2.0000   | 830.0000     | 176.7000 | Decreasing     | 5.6590   | 0.5000 | 49.0000     | 10.3400 Decreasing    |





|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | Nic                                     | kel (dissol | ved)                |        | Lea    | d (dissolv | red)                |        | Silv   | er (dissolv | ved)                |        |        | Zinc (diss | olved)  |                 |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------|-------------|---------------------|--------|--------|------------|---------------------|--------|--------|-------------|---------------------|--------|--------|------------|---------|-----------------|
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mean   | Min                                     | Max         | StdDv MK Trend      | Mean   | Min    | Max        | StdDv MK Trend      | Mean   | Min    | Max         | StdDv MK Trend      | Mean   | Min    | Max        | StdDv   | MK Trend        |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.5240 | 0.5000                                  | 23.0000     | 4.1370 Increasing   | 0.5550 | 0.1000 | 1.0000     | 0.4510 Increasing   | 2.29   | 0.04   | 5.00        | 2.49 Increasing     | 3.0690 | 1.0000 | 8.0000     | 2.1870  | Increasing      |
| Location | Site ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.1620 | 0.5000                                  | 13.0000     | 2.2900 Increasing   | 0.5410 | 0.1000 | 1.0000     | 0.4520 Increasing   | 2.29   | 0.04   | 5.00        | 2.50 Increasing     | 3.1380 | 1.0000 | 8.0000     | 2.1830  | Increasing      |
|          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0700 | 0.5000                                  | 10.0000     | 1.7040 Increasing   | 0.5370 | 0.1000 | 1.0000     | 0.4440 Increasing   | 2.22   | 0.01   | 5.00        | 2.48 Increasing     | 3.2000 | 1.0000 | 6.0000     | 2.0240  | Increasing      |
|          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0410 | 0.5000                                  | 9.0000      | 1.5490 Increasing   | 0.5590 | 0.1000 | 1.0000     | 0.4520 Increasing   | 2.29   | 0.01   | 5.00        | 2.50 Increasing     | 3.1720 | 1.0000 | 8.0000     | 2.1220  | Increasing      |
|          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8890 | 0.5000                                  | 4.0000      | 0.5740 Increasing   | 0.6240 | 0.1000 | 2.0000     | 0.4960 Increasing   | 2.43   | 0.01   | 5.00        | 2.48 Increasing     | 3.2890 | 1.0000 | 10.0000    | 2.2650  | Increasing      |
|          | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8350 | 0.5000                                  | 3.0000      | 0.4310 Increasing   | 0.5750 | 0.1000 | 1.0000     | 0.4460 Insufficient | 2.31   | 0.01   | 5.00        | 2.47 Insufficient   | 3.0500 | 1.0000 | 6.0000     | 2.0370  | Insufficient    |
|          | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.8420 | 0.5000                                  | 2.0000      | 0.3180 Increasing   | 0.5970 | 0.1000 | 1.0000     | 0.4450 Increasing   | 2.43   | 0.01   | 5.00        | 2.48 Increasing     | 3.2370 | 1.0000 | 7.0000     | 2.0330  | Increasing      |
|          | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.7850 | 0.5000                                  | 1.2000      | 0.2550 Increasing   | 0.5630 | 0.1000 | 1.0000     | 0.4500 Insufficient | 2.31   | 0.01   | 5.00        | 2.47 Insufficient   | 3.0000 | 1.0000 | 5.0000     | 2.0250  | Insufficient    |
| Lobbs    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.1650 | 0.5000                                  | 3.9000      | 0.8350 Insufficient | 0.5920 | 0.1000 | 1.0000     | 0.4330 Increasing   | 2.36   | 0.01   | 5.00        | 2.48 Increasing     | 5.9730 | 1.0000 | 67.0000    | 10.7200 | Increasing      |
| Hole     | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.5920 | 0.5000                                  | 1.0000      | 0.1830 Decreasing   | 0.2380 | 0.1000 | 1.0000     | 0.3310 Decreasing   | 0.35   | 0.01   | 5.00        | 1.00 Decreasing     | 1.8080 | 1.0000 | 5.0000     | 1.4970  | Decreasing      |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.7500 | 0.5000                                  | 1.0000      | 0.3540 Deficient v  | 0.6500 | 0.3000 | 1.0000     | 0.4950 Deficient va | 0.55   | 0.10   | 1.00        | 0.64 Deficient va   | 5.5000 | 5.0000 | 6.0000     | 0.7070  | Deficient value |
|          | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.7500 | 0.5000                                  | 1.0000      | 0.3540 Deficient v  | 0.5500 | 0.1000 | 1.0000     | 0.6360 Deficient va | 0.55   | 0.10   | 1.00        | 0.64 Deficient va   | 3.0000 | 1.0000 | 5.0000     | 2.8280  | Deficient value |
|          | The second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.6410 | 0.5000                                  | 2.0000      | 0.3500 Decreasing   | 0.7910 | 0.1000 | 12.0000    | 2.5240 Decreasing   | 0.41   | 0.01   | 5.00        | 1.08 Decreasing     | 2.3640 | 1.0000 | 9.0000     | 2.2160  | Decreasing      |
|          | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.7750 | 0.5000                                  | 1.0000      | 0.2520 Increasing   | 0.5950 | 0.1000 | 1.0000     | 0.4530 Increasing   | 2.5600 | 0.0100 | 5.0000      | 2.4800 Increasing   | 3.93   | 1.00   | 21.00      | 3.50    | Increasing      |
|          | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.7630 | 0.5000                                  | 1.0000      | 0.2530 Increasing   | 0.5730 | 0.1000 | 1.0000     | 0.4550 Increasing   | 2.4350 | 0.0100 | 5.0000      | 2.4800 Increasing   | 3.30   | 1.00   | 8.00       | 2.04    | Increasing      |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.7780 | 0.5000                                  | 1.0000      | 0.2480 Increasing   | 0.5890 | 0.1000 | 1.0000     | 0.4520 Increasing   | 2.6040 | 0.0100 | 5.0000      | 2.5010 Increasing   | 3.97   | 1.00   | 16.00      | 3.69    | Increasing      |
| Marica   | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.8220 | 0.5000                                  | 2.0000      | 0.3790 Increasing   | 0.5750 | 0.1000 | 1.0000     | 0.4560 Increasing   | 2.5380 | 0.0100 | 5.0000      | 2.5030 Increasing   | 5.53   | 1.00   | 91.00      | 14.79   | Increasing      |
| -        | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.7680 | 0.5000                                  | 1.0000      | 0.2510 Increasing   | 0.5650 | 0.1000 | 1.0000     | 0.4540 Increasing   | 2.3610 | 0.0100 | 5.0000      | 2.4760 Increasing   | 3.32   | 1.00   | 9.00       | 2.37    | Increasing      |
|          | and the same of th | 0.7760 | 0.5000                                  | 1.1000      | 0.2530 Increasing   | 0.5780 | 0.1000 | 1.0000     | 0.4470 Increasing   | 2.3610 | 0.0100 | 5.0000      | 2.4760 Increasing   | 3.54   | 1.00   | 11.00      | 2.49    | Insufficient    |
|          | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.8420 | 0.5000                                  | 2.4000      | 0.3610 Increasing   | 0.6000 | 0.1000 | 1.0000     | 0.4540 Increasing   | 2.6760 | 0.0100 | 5.0000      | 2.4970 Increasing   | 3.92   | 1.00   | 24.00      | 4.18    | Increasing      |
|          | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.8500 | 0.5000                                  | 2.0000      | 0.3670 Insufficient | 0.5750 | 0.1000 | 1.0000     | 0.4560 Increasing   | 2.4260 | 0.0100 | 5.0000      | 2.4790 Increasing   | 4.25   | 1.00   | 14.00      | 3.49    | Insufficient    |
|          | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.7860 | 0.5000                                  | 1.0000      | 0.2460 Increasing   | 0.5890 | 0.1000 | 1.0000     | 0.4550 Increasing   | 2.4950 | 0.0100 | 5.0000      | 2.4800 Insufficient | 4.09   | 1.00   | 25.00      | 4.08    | Increasing      |
|          | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.8170 | 0.5000                                  | 2.0000      | 0.3160 Insufficient | 0.5750 | 0.1000 | 1.0000     | 0.4560 Increasing   | 2.4260 | 0.0100 | 5.0000      | 2.4790 Increasing   | 3.92   | 1.00   | 16.00      | 3.62    | Insufficient    |
| antanga  | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.7970 | 0.5000                                  | 1.0000      | 0.2470 Increasing   | 0.6140 | 0.1000 | 1.0000     | 0.4520 Increasing   | 2.7520 | 0.0100 | 5.0000      | 2.4910 Insufficient | 4.20   | 1.00   | 20.00      | 3.88    | Insufficient    |
| ra       | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.8060 | 0.5000                                  | 1.0000      | 0.2450 Insufficient | 0.6290 | 0.1000 | 1.0000     | 0.4500 Insufficient | 2.8330 | 0.0100 | 5.0000      | 2.4810 Insufficient | 4.53   | 1.00   | 21.00      | 3.92    | Insufficient    |
|          | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.8030 | 0.5000                                  | 1.0000      | 0.2420 Insufficient | 0.6290 | 0.1000 | 1.0000     | 0.4500 Insufficient | 2.8330 | 0.0100 | 5.0000      | 2.4810 Insufficient | 3.71   | 1.00   | 8.00       | 2.10    | Insufficient    |
|          | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.8330 | 0.5000                                  | 1.0000      | 0.2440 Decreasing   | 0.7000 | 0.1000 | 1.0000     | 0.4390 Decreasing   | 2.8170 | 0.0100 | 5.0000      | 2.4350 Decreasing   | 4.73   | 1.00   | 18.00      | 4.28    | Insufficient    |
|          | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.8330 | 0.5000                                  | 1.0000      | 0.2440 Decreasing   | 0.7000 | 0.1000 | 1.0000     | 0.4390 Decreasing   | 3.0820 | 0.0100 | 5.0000      | 2.4430 Decreasing   | 3.73   | 1.00   | 5.00       | 1.87    | Decreasing      |
|          | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9840 | 0.5000                                  | 2.0000      | 0.3450 Decreasing   | 0.5860 | 0.1000 | 1.0000     | 0.4550 Increasing   | 2,4960 | 0.0100 | 5.0000      | 2,4810 Increasing   | 4.22   | 1.00   | 21.00      | 3.31    | Increasing      |
|          | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,0080 | 0.5000                                  | 2,0000      | 0.3820 Decreasing   | 0.6240 | 0.1000 | 1,0000     | 0.4400 Increasing   | 2,6310 | 0.0100 | 5,0000      | 2,4770 Insufficient | 3,60   | 1.00   | 5.00       | 1.76    | Increasing      |
| Rock     | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9760 | 0.5000                                  | 5.0000      | 0.9430 Insufficient | 0.5830 | 0.1000 | 1.0000     | 0.4540 Increasing   | 2.5970 | 0.0100 | 5.0000      | 2.4980 Increasing   | 3.59   | 1.00   | 8.00       |         | Insufficient    |
| Forest   | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.8460 | 0.5000                                  | 4.0000      | 0.5620 Increasing   | 0.5830 | 0.1000 | 1.0000     | 0.4540 Increasing   | 2,5970 | 0.0100 | 5.0000      | 2.4980 Increasing   | 3.32   | 1.00   | 10.00      |         | Increasing      |
| rorest   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.1300 | 0.5000                                  | 5.3000      | 1.0570 Decreasing   | 0.6730 | 0.1000 | 3.0000     | 0.6380 Decreasing   | 2.4460 | 0.0100 | 5.0000      | 2.4770 Decreasing   | 37.61  | 4.00   | 270.00     |         | Insufficient    |
| Talbingo | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.2230 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |             |                     |        |        |            |                     |        |        |             |                     |        |        | 2.0.00     | 55      |                 |
| ramingo  | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |                                         |             |                     |        |        |            |                     |        |        |             |                     |        |        |            |         |                 |





|          |         |         |       |          |                  |              |       |      |        |         |                 |            |         |           |          |               | Nu          | trients, Ir | norganics, | and TPH  |             |          |        |             |          |             |
|----------|---------|---------|-------|----------|------------------|--------------|-------|------|--------|---------|-----------------|------------|---------|-----------|----------|---------------|-------------|-------------|------------|----------|-------------|----------|--------|-------------|----------|-------------|
| ocation  | Site II | D       |       | Ammoni   | ia               | Cyan         | nide  |      |        |         |                 | Kjeldahl N | itrogen |           |          |               | Nitrate + N | litrite     |            |          |             | Nitrogen |        |             |          |             |
| Cation   | Jice II | Mean    | Min   | Max      | StdDv MK Tr      | end Me       | ean   | Min  | Max    | StdDv   | MK Trend        | Mean       | Min     | Max       | StdDv    | MK Trend      | Mean        | Min         | Max        | StdDv    | MK Trend    | Mean     | Min    | Max         | StdDv    | MK Tren     |
|          | 5       | 15.68   | 4.00  | 110.00   | 23.68 Insuffici  | ent          | 4.14  | 4.00 | 8.00   | 0.76 1  | Insufficient    | 182.10     | 2.00    | 2130.00   | 396.80   | Insufficient  | 22.62       | 1.00        | 102.00     | 24.87    | Insufficier | 197.30   | 2.00   | 2230.00     | 414.00   | Insufficier |
|          | 6       | 14.64   | 1.00  | 60.00    | 17.54 Insuffici  | ent          | 5.18  | 4.00 | 18.00  | 3.74 1  | Insufficient    | 83.14      | 1.00    | 780.00    | 155.30   | Insufficient  | 42.72       | 1.00        | 262.00     | 66.10    | Insufficier | 123.80   | 1.00   | 850.00      | 176.50   | Insufficier |
|          | 8       | 19.00   | 1.00  | 150.00   | 33.91 Insuffici  | ent          | 4.14  | 4.00 | 8.00   | 0.74 1  | Insufficient    | 117.10     | 2.00    | 530.00    | 130.20   | Insufficient  | 23.17       | 1.00        | 110.00     | 26.91    | Insufficier | 1.50     | 2.00   | 550.00      | 137.10   | Insufficier |
|          | 9       | 26.46   | 1.00  | 390.00   | 75.22 Insuffici  | ent 1        | 12.25 | 4.00 | 230.00 | 42.68 1 | Insufficient    | 108.00     | 2.00    | 700.00    | 147.70   | Insufficient  | 24.93       | 1.00        | 120.00     | 33.72    | Insufficier | 127.70   | 2.00   | 700.00      | 166.20   | Insufficier |
|          | 12      | 21.71   | 1.00  | 160.00   | 32.36 Insuffici  | ent          | 4.22  | 4.00 | 9.00   | 0.85 1  | Insufficient    | 173.70     | 2.00    | 1450.00   | 294.20   | Insufficient  | 47.92       | 2.00        | 530.00     | 91.59    | Insufficier | 211.30   | 8.00   | 1520.00     | 311.50   | Increasing  |
| Lobbs    | 14      | 13.05   | 1.00  | 90.00    | 16.86 Insuffici  | ent          | 4.15  | 4.00 | 8.00   | 0.67 1  | Insufficient    | 141.90     | 1.00    | 770.00    | 200.50   | Insufficient  | 39.21       | 1.00        | 520.00     | 89.30    | Insufficier | 162.10   | 1.00   | 800.00      | 211.00   | Insufficier |
| Hole     | 15      | 30.97   | 1.00  | 300.00   | 60.96 Insuffici  | ent          | 4.16  | 4.00 | 8.00   | 0.69 1  | Insufficient    | 208.20     | 3.00    | 2500.00   | 424.80   | Insufficient  | 21.14       | 1.00        | 100.00     | 26.42    | Insufficier | 224.10   | 3.00   | 2500.00     | 429.00   | Insufficier |
| Hole     | 16      | 19.67   | 1.00  | 190.00   | 36.92 Insuffici  | ent          | 4.49  | 4.00 | 10.00  | 1.47    | Insufficient    | 107.30     | 2.00    | 430.00    | 106.60   | Insufficient  | 22.21       | 1.00        | 220.00     | 29.26    | Insufficier | 122.40   | 2.00   | 590.00      | 128.70   | Insufficier |
|          | 24      | 26.28   | 2.00  | 220.00   | 48.64 Insuffici  | ent          | 5.11  | 4.00 | 21.00  | 4.00 1  | Insufficient    | 153.80     | 7.00    | 750.00    | 176.90   | Insufficient  | 308.00      | 6.00        | 2500.00    | 546.80   | Increasing  | 452.90   | 30.00  | 2500.00     | 589.00   | Increasing  |
|          | 52      | 31.48   | 1.00  | 170.00   | 39.39 Decreas    | ing          | 4.00  | 4.00 | 4.00   | 0.00 1  | Insufficient    | 2154.00    | 1.00    | 6000.00   | 1883.00  | Decreasing    | 14249.00    | 13.00       | 30300.00   | 10113.00 | Decreasin   | 16422.00 | 13.00  | 35100.00    | 11543.00 | Decreasin   |
|          | 53      | 45.00   | 30.00 | 60.00    | 21.21 Deficien   | t valu       | 4.00  | 4.00 | 4.00   | 0.00    | Deficient value | 150.00     | 100.00  | 200.00    | 70.71    | Deficient val | 15.00       | 10.00       | 20.00      | 7.07     | Deficient   | 150.00   | 100.00 | 200.00      | 70.71    | Deficient   |
|          | 54      | 35.00   | 10.00 | 60.00    | 35.36 Deficien   | t valu       | 4.00  | 4.00 | 4.00   | 0.00    | Deficient value | 100.00     | 100.00  | 100.00    | 0.00     | Deficient val | 20.00       | 20.00       | 20.00      | 0.00     | Deficient   | 100.00   | 100.00 | 100.00      | 0.00     | Deficient : |
|          | 55      | 70.87   | 1.00  | 500.00   | 117.90 Decreas   | ing          | 4.00  | 4.00 | 4.00   | 0.00    | Insufficient    | 1441.00    | 1.00    | 6600.00   | 1515.00  | Insufficient  | 9501.00     | 3.00        | 23900.00   | 7176.00  | Insufficier | 10746.00 | 1.00   | 26700.00    | 8205.00  | Insufficier |
| 22200200 | 26      | 10.69   | 1.00  | 100.00   | 15.78 Insuffici  | ent          | 4.15  | 4.00 | 8.00   | 0.71    | Insufficient    | 88.05      | 2.00    | 800.00    | 128.10   | Insufficient  | 60.79       | 1.00        | 1500.00    | 238.20   | Increasing  | 137.30   | 2.00   | 2300.00     | 357.70   | Insufficier |
| Marica   | 27      | 13.74   | 1.00  | 160.00   | 28.05 Increasi   | ng           | 4.59  | 4.00 | 10.00  | 1.84    | Insufficient    | 206.30     | 1.00    | 5200.00   | 811.70   | Increasing    | 227.60      | 1.00        | 7000.00    | 1125.00  | Insufficier | 415.30   | 1.00   | 12000.00    | 1888.00  | Increasing  |
|          | 28      | 10.36   | 1.00  | 70.00    | 14.92 Insuffici  | ent 1        | 13.64 | 4.00 | 340.00 | 55.96 1 | Insufficient    | 163.20     | 10.00   | 800.00    | 145.10   | Insufficient  | 15.46       | 2.00        | 110.00     | 20.12    | Increasing  | 165.90   | 10.00  | 800.00      | 144.90   | Insufficier |
|          | 29      | 8.56    | 1.00  | 30.00    | 5.95 Insuffici   | ent          | 4.83  | 4.00 | 18.00  | 3.29 1  | Insufficient    | 155.80     | 10.00   | 440.00    | 97.96    | Insufficient  | 15.03       | 2.00        | 50.00      | 15.31    | Increasing  | 160.00   | 10.00  | 440.00      | 100.40   | Insufficier |
|          | 30      | 10.54   | 1.00  | 54.00    | 12.09 Insuffici  | ent          | 4.17  | 4.00 | 9.00   | 0.85 1  | Insufficient    | 96.81      | 2.00    | 520.00    | 92.62    | Insufficient  | 17.42       | 1.00        | 60.00      | 15.98    | Increasing  | 104.60   | 2.00   | 580.00      | 98.98    | Insufficier |
|          | 31      | 8.54    | 1.00  | 34.00    | 5.98 Insuffici   | ent          | 4.14  | 4.00 | 7.00   | 0.54 1  | Insufficient    | 90.05      | 2.00    | 400.00    | 71.58    | Insufficient  | 14.78       | 1.00        | 139.00     | 24.25    | Increasing  | 97.89    | 2.00   | 400.00      | 77.04    | Insufficier |
|          | 32      | 8.91    | 5.00  | 35.00    | 7.32 Insuffici   | ent 1        | 10.71 | 4.00 | 230.00 | 38.16   | Insufficient    | 177.20     | 10.00   | 940.00    | 164.90   | Insufficient  | 20.89       | 2.00        | 250.00     | 42.17    | Increasing  | 195.60   | 10.00  | 940.00      | 187.10   | Insufficier |
|          | 33      | 13.06   | 1.00  | 110.00   | 19.40 Insuffici  | ent          | 3.91  | 0.27 | 5.00   | 0.75 1  | Insufficient    | 139.20     | 2.00    | 280.00    | 66.05    | Insufficient  | 14.51       | 1.00        | 50.00      | 12.33    | Insufficier | 145.50   | 2.00   | 290.00      | 67.41    | Insufficier |
| antanga  | 34      | 9.64    | 1.00  | 42.00    | 9.69 Insuffici   | ent          | 4.05  | 0.23 | 6.00   | 0.88 1  | Insufficient    | 122.70     | 2.00    | 300.00    | 89.00    | Insufficient  | 10.26       | 1.00        | 50.00      | 9.09     | Increasing  | 124.80   | 2.00   | 300.00      | 90.38    | Insufficier |
| ra       | 35      | 8.50    | 1.00  | 41.00    | 7.49 Insuffici   | ent          | 4.06  | 4.00 | 5.00   | 0.24 1  | Insufficient    | 138.10     | 2.00    | 700.00    | 131.30   | Insufficient  | 48.80       | 1.00        | 850.00     | 147.30   | Insufficier | 152.50   | 2.00   | 700.00      | 139.10   | Insufficier |
|          | 38      | 10.97   | 5.00  | 50.00    | 11.16 Insuffici  | ent          | 4.21  | 4.00 | 6.00   | 0.48    | Insufficient    | 205.70     | 10.00   | 1300.00   | 254.80   | Insufficient  | 812.90      | 2.00        | 18000.00   | 4731.00  | Increasing  | 999.70   | 10.00  | 29000.00    | 4875.00  | Insufficien |
|          | 39      | 10.00   | 5.00  | 30.00    | 8.26 Insuffici   | ent          | 4.00  | 0.13 | 5.00   | 0.79 1  | Insufficient    | 130.30     | 10.00   | 500.00    | 115.90   | Insufficient  | 19.82       | 2.00        | 210.00     | 36.45    | Increasing  | 140.30   | 10.00  | 500.00      | 129.00   | Increasing  |
|          | 40      | 16.29   | 5.00  | 140.00   | 25.34 Insuffici  | ent          | 4.06  | 4.00 | 5.00   | 0.24 1  | Insufficient    | 128.20     | 10.00   | 450.00    | 106.60   | Insufficient  | 20.32       | 2.00        | 310.00     | 52.31    | Increasing  | 140.90   | 10.00  | 610.00      | 135.30   | Insufficier |
|          | 50      | 30.20   | 4.00  | 130.00   | 45.47 Insuffici  | ent          | 4.20  | 4.00 | 6.00   | 0.56 1  | Insufficient    | 468.90     | 3.00    | 5000.00   | 1259.00  | Insufficient  | 431.40      | 9.00        | 4200.00    | 1090.00  | Decreasin   | 610.90   | 4.00   | 5000.00     | 1224.00  | Insufficier |
|          | 51      | 10.67   | 5.00  | 34.00    | 8.30 Increasi    | ng           | 4.07  | 4.00 | 5.00   | 0.26 1  | Insufficient    | 144.00     | 10.00   | 400.00    | 99.34    | Increasing    | 32.00       | 10.00       | 250.00     | 61.55    | Insufficier | 146.70   | 10.00  | 400.00      | 99.19    | Increasing  |
| Rock     | 36      | 18.70   | 2.00  | 220.00   | 36.54 Insuffici  | ent          | 5.23  | 4.00 | 22.00  | 4.26 1  | Insufficient    | 353.60     | 4.00    | 3000.00   | 498.40   | Insufficient  | 576.80      | 2.00        | 18000.00   | 2988.00  | Increasing  | 911.00   | 6.00   | 21000.00    | 3402.00  | Insufficier |
| Forest   | 37      | 25.51   | 2.00  | 210.00   | 40.29 Decreas    | ing          | 4.14  | 4.00 | 5.00   | 0.36 1  | Insufficient    | 355.20     | 4.00    | 1880.00   | 357.00   | Insufficient  | 293.40      | 2.00        | 8700.00    | 1442.00  | Increasing  | 412.30   | 5.00   | 2100.00     | 386.20   | Insufficier |
|          | 10      | 2.00    | 1.00  | 200.00   | 34.62 Insuffici  | ent          | 4.18  | 4.00 | 9.00   | 0.81    | Insufficient    | 195.20     | 2.00    | 900.00    | 237.10   | Insufficient  | 124.30      | 1.00        | 4200.00    | 670.00   | Increasing  | 310.10   | 2.00   | 5100.00     | 813.80   | Insufficie  |
| Talbingo | 11      | 15.00   | 1.00  | 180.00   | 30.64 Insuffici  | ent          | 4.18  | 4.00 | 8.00   | 0.68 1  | Insufficient    | 170.60     | 2.00    | 630.00    | 170.20   | Insufficient  | 56.40       | 1.00        | 1500.00    | 235.00   | Increasing  | 218.30   | 2.00   | 2100.00     | 340.60   | Insufficier |
| 1000     | 41      | 1701.00 | 1.00  | 76600.00 | 10925.00 Decreas | Section 1997 | 4.93  | 4.00 | 22.00  | 2.96 [  | Decreasing      | 2955.00    | 1.00    | 102000.00 | 14874.00 | Decreasing    | 518.30      | 3.00        | 6380.00    | 1201.00  | Decreasin   | 3467.00  | 1.00   | *********** | 15676.00 | Decreasin   |





| Location | Site ID |
|----------|---------|
|          | 5       |
|          | 6       |
|          | 8       |
|          | 9       |
|          | 12      |
| Lobbs    | 14      |
| Hole     | 15      |
| noie     | 16      |
|          | 24      |
|          | 52      |
|          | 53      |
|          | 54      |
|          | 55      |
|          | 26      |
| Marica   | 27      |
| ***      | 28      |
|          | 29      |
|          | 30      |
|          | 31      |
|          | 32      |
|          | 33      |
| Tantanga | 34      |
| ra       | 35      |
|          | 38      |
|          | 39      |
|          | 40      |
|          | 50      |
|          | 51      |
| Rock     | 36      |
| Forest   | 37      |
|          | 10      |
| Talbingo | 11      |
|          | 41      |

| otal Phos | phorus |          |                     | Reactive P | hosphoru | s as P (filt | ered)              |       | Hardnes | as CaCO3 | (filtered) |              | Total susp | ended sol | ids     |        |              | Oil and Gr | ease (ug/L | )       |          |                |
|-----------|--------|----------|---------------------|------------|----------|--------------|--------------------|-------|---------|----------|------------|--------------|------------|-----------|---------|--------|--------------|------------|------------|---------|----------|----------------|
| Mean      | Min    | Max      | StdDv MK Trend      | Mean       | Min      | Max          | StdDv MK Trend     | Mean  | Min     | Max      | StdDv      | MK Trend     | Mean       | Min       | Max     | StdDv  | MK Trend     | Mean       | Min        | Max     | StdDv    | MK Trend       |
| 68.30     | 1.00   | 1160.00  | 238.50 Insufficient | 7.61       | 2.00     | 29.00        | 6.56 Insufficient  | 32.19 | 14.00   | 56.00    | 11.74      | Insufficient | 107.80     | 5.00      | 2190.00 | 408.30 | Decreasing   | 6.78       | 1.00       | 27.00   | 6.00 1   | nsufficient    |
| 58.83     | 3.00   | 846.00   | 173.60 Insufficient | 9.28       | 4.00     | 24.00        | 4.86 Insufficient  | 36.44 | 21.00   | 58.00    | 10.42      | Increasing   | 47.73      | 5.00      | 840.00  | 156.50 | Insufficient | 5.36       | 1.00       | 15.00   | 2.38 1   | nsufficient    |
| 50.54     | 2.00   | 924.00   | 186.20 Decreasing   | 9.75       | 2.00     | 60.00        | 12.60 Insufficient | 36.50 | 14.00   | 53.00    | 9.38       | Insufficient | 92.11      | 1.00      | 1500.00 | 311.20 | Decreasing   | 6.23       | 1.00       | 22.00   | 4.55 1   | nsufficient    |
| 51.52     | 2.00   | 873.00   | 179.50 Decreasing   | 6.72       | 2.00     | 16.00        | 3.95 Insufficient  | 34.56 | 14.00   | 53.00    | 9.35       | Insufficient | 69.09      | 5.00      | 1480.00 | 273.60 | Decreasing   | 6.42       | 1.00       | 20.00   | 4.19     | nsufficient    |
| 58.22     | 2.00   | 1340.00  | 234.40 Insufficient | 6.73       | 1.00     | 16.00        | 4.34 Insufficient  | 34.09 | 14.00   | 64.00    | 12.66      | Increasing   | 81.72      | 5.00      | 1870.00 | 316.90 | Decreasing   | 5.71       | 1.00       | 24.00   | 4.69 [   | Decreasing     |
| 58.29     | 2.00   | 1130.00  | 192.60 Insufficient | 7.17       | 1.00     | 20.00        | 3.97 Insufficient  | 38.09 | 14.00   | 65.00    | 10.98      | Increasing   | 70.94      | 5.00      | 1430.00 | 250.50 | Decreasing   | 5.46       | 1.00       | 18.00   | 4.00 [   | Decreasing     |
| 42.31     | 3.00   | 731.00   | 126.90 Insufficient | 8.41       | 1.00     | 47.00        | 9.09 Insufficient  | 34.81 | 14.00   | 65.00    | 12.06      | Increasing   | 79.49      | 5.00      | 1510.00 | 281.10 | Decreasing   | 5.20       | 1.00       | 21.00   | 3.70 [   | Decreasing     |
| 39.59     | 3.00   | 869.00   | 146.90 Insufficient | 8.72       | 1.00     | 50.00        | 9.04 Insufficient  | 36.09 | 14.00   | 66.00    | 11.37      | Increasing   | 60.29      | 5.00      | 1680.00 | 264.50 | Decreasing   | 5.66       | 1.00       | 30.00   | 5.34 [   | Decreasing     |
| 71.68     | 2.00   | 810.00   | 177.50 Insufficient | 12.11      | 1.00     | 78.00        | 18.99 Insufficient | 48.87 | 21.00   | 220.00   | 41.53      | Increasing   | 53.29      | 5.00      | 820.00  | 142.40 | Insufficient | 6.57       | 1.00       | 33.00   | 6.51     | Decreasing     |
| 30.07     | 2.00   | 230.00   | 46.87 Decreasing    | 9.74       | 3.00     | 10.00        | 1.35 Insufficient  | 98.67 | 72.00   | 180.00   | 40.32      | Insufficient | 12.38      | 5.00      | 37.00   | 7.85   | Insufficient | 1.60       | 1.00       | 5.00    | 1.32 [   | Decreasing     |
| 15.00     | 10.00  | 20.00    | 7.07 Deficient val  | 10.00      | 10.00    | 10.00        | 0.00 Deficient val |       |         |          |            | Deficient va | 18.50      | 5.00      | 32.00   | 19.09  | Deficient va | 2.00       | 2.00       | 2.00    | 0.00     | Deficient valu |
| 10.00     | 10.00  | 10.00    | 0.00 Deficient val  | 10.00      | 10.00    | 10.00        | 0.00 Deficient val |       |         |          |            | Deficient v  | 5.00       | 5.00      | 5.00    | 0.00   | Deficient va | 2.00       | 2.00       | 2.00    | 0.00     | Deficient valu |
| 22.13     | 1.00   | 60.00    | 1.48 Decreasing     | 9.70       | 3.00     | 10.00        | 1.46 Insufficient  | 35.40 | 6.00    | 53.00    | 19.33      | Insufficient | 16.18      | 5.00      | 62.00   | 16.49  | Insufficient | 1.70       | 1.00       | 5.00    | 1.36     | Decreasing     |
| 19.35     | 3.00   | 97.00    | 21.95 Insufficient  | 13.72      | 1.00     | 250.00       | 43.37 Insufficient | 13.44 | 2.00    | 71.00    | 11.63      | Insufficient | 30.45      | 5.00      | 964.00  | 151.50 | Insufficient | 5.34       | 1.00       | 17.00   | 3.31     | Decreasing     |
| 17.85     | 3.00   | 100.00   | 20.91 Insufficient  | 9.62       | 1.00     | 98.00        | 17.62 Insufficient | 11.56 | 5.00    | 35.00    | 5.64       | Insufficient | 7.26       | 5.00      | 29.00   | 4.80   | Insufficient | 6.46       | 1.00       | 24.00   | 5.31     | nsufficient    |
| 25.58     | 5.00   | 210.00   | 37.15 Insufficient  | 11.00      | 1.00     | 74.00        | 16.94 Insufficient | 6.57  | 1.00    | 9.00     | 2.37       | Decreasing   | 19.16      | 5.00      | 476.00  | 77.25  | Insufficient | 6.96       | 1.00       | 27.00   | 6.03     | nsufficient    |
| 16.28     | 5.00   | 50.00    | 11.39 Insufficient  | 4.54       | 1.00     | 10.00        | 3.54 Increasing    | 6.42  | 1.00    | 9.80     | 2.66       | Insufficient | 5.81       | 5.00      | 24.00   | 3.28   | Insufficient | 13.94      | 1.00       | 130.00  | 26.11    | nsufficient    |
| 17.88     | 2.00   | 69.00    | 14.56 Insufficient  | 5.82       | 1.00     | 10.00        | 3.26 Insufficient  | 8.52  | 1.00    | 35.00    | 5.94       | Increasing   | 10.03      | 5.00      | 52.00   | 8.52   | Insufficient | 5.88       | 1.00       | 24.00   | 4.77 1   | nsufficient    |
| 20.64     | 5.00   | 180.00   | 30.99 Increasing    | 5.69       | 1.00     | 10.00        | 3.31 Insufficient  | 7.34  | 1.00    | 35.00    | 6.14       | Insufficient | 10.22      | 5.00      | 49.00   | 8.15   | Decreasing   | 6.68       | 1.00       | 70.00   | 11.29 [  | Decreasing     |
| 111.30    | 5.00   | 3100.00  | 536.80 Insufficient | 4.69       | 1.00     | 10.00        | 3.37 Increasing    | 6.50  | 1.00    | 10.00    | 2.55       | Insufficient | 6.54       | 5.00      | 30.00   | 4.98   | Insufficient | 11.51      | 1.00       | 140.00  | 24.92    | nsufficient    |
| 16.13     | 1.00   | 60.00    | 12.61 Insufficient  | 5.50       | 1.00     | 10.00        | 3.36 Insufficient  | 9.94  | 2.00    | 35.00    | 7.21       | Insufficient | 5.98       | 5.00      | 15.00   | 2.45   | Insufficient | 5.95       | 1.00       | 52.00   | 8.31     | Decreasing     |
| 9.84      | 2.00   | 30.00    | 6.65 Insufficient   | 5.00       | 1.00     | 12.00        | 3.87 Insufficient  | 5.82  | 1.00    | 35.00    | 6.13       | Insufficient | 5.77       | 5.00      | 14.00   | 2.14   | Insufficient | 5.46       | 1.00       | 17.00   | 3.81     | nsufficient    |
| 14.09     | 2.00   | 110.00   | 21.28 Increasing    | 5.85       | 1.00     | 16.00        | 4.16 Insufficient  | 6.13  | 1.00    | 35.00    | 6.38       | Insufficient | 6.22       | 5.00      | 24.00   | 3.55   | Insufficient | 5.74       | 1.00       | 21.00   | 4.93 [   | Decreasing     |
| 23.75     | 5.00   | 150.00   | 33.34 Insufficient  | 4.58       | 1.00     | 10.00        | 3.47 Insufficient  | 6.91  | 1.00    | 9.80     | 2.54       | Insufficient | 19.43      | 5.00      | 473.00  | 79.12  | Insufficient | 7.74       | 1.00       | 50.00   | 8.95     | nsufficient    |
| 26.10     | 5.00   | 370.00   | 66.09 Insufficient  | 4.63       | 1.00     | 10.00        | 3.39 Increasing    | 5.87  | 1.00    | 10.00    | 2.64       | Insufficient | 9.04       | 5.00      | 54.00   | 11.17  | Insufficient | 7.85       | -2.20      | 63.00   | 11.75    | nsufficient    |
| 15.93     | 5.00   | 90.00    | 16.97 Increasing    | 4.48       | 1.00     | 10.00        | 3.37 Insufficient  | 6.80  | 1.00    | 11.00    | 2.86       | Insufficient | 6.16       | 5.00      | 22.00   | 3.48   | Insufficient | 5.14       | 1.00       | 11.00   | 2.46 1   | nsufficient    |
| 12.93     | 1.00   | 50.00    | 12.53 Insufficient  | 7.13       | 1.00     | 18.00        | 4.85 Insufficient  | 4.92  | 1.00    | 8.30     | 1.83       | Insufficient | 5.00       | 5.00      | 5.00    | 0.00   | Insufficient | 6.93       | 1.00       | 30.00   | 9.10     | Decreasing     |
| 24.27     | 5.00   | 120.00   | 30.99 Insufficient  | 5.60       | 1.00     | 10.00        | 4.37 Increasing    | 5.67  | 5.00    | 7.30     | 0.73       | Insufficient | 15.16      | 5.00      | 140.00  | 34.75  | Insufficient | 6.31       | 1.00       | 21.00   | 6.07     | Decreasing     |
| 21.15     | 4.00   | 120.00   | 22.27 Insufficient  | 7.46       | 1.00     | 33.00        | 6.40 Insufficient  | 14.43 | 7.70    | 35.00    | 5.11       | Insufficient | 7.32       | 5.00      | 22.00   | 3.87   | Increasing   | 8.09       | 1.00       | 62.00   | 10.97    | nsufficient    |
| 28.18     | 5.00   | 120.00   | 24.75 Insufficient  | 8.17       | 1.00     | 50.00        | 9.57 Insufficient  | 15.58 | 9.10    | 35.00    | 5.29       | Insufficient | 11.36      | 5.00      | 80.00   | 13.86  | Increasing   | 42.82      | 1.00       | 1400.00 | 226.20 [ | Decreasing     |
| 47.03     | 3.00   | 1260.00  | 211.10 Insufficient | 5.61       | 1.00     | 14.00        | 3.73 Insufficient  | 23.86 | 5.00    | 41.00    | 7.97       | Insufficient | 7.22       | 5.00      | 20.00   | 4.35   | Decreasing   | 8.09       | 1.00       | 28.00   | 7.61     | nsufficient    |
| 11.74     | 1.00   | 50.00    | 9.67 Insufficient   | 7.93       | 1.00     | 53.00        | 10.19 Insufficient | 23.34 | 5.00    | 40.00    | 7.26       | Insufficient | 6.78       | 5.00      | 22.00   |        | Decreasing   | 7.64       | 1.00       | 53.00   | 8.83 [   | Decreasing     |
| 319.50    | 1.00   | 13100.00 | 1928.00 Decreasing  | 22.35      | 1.00     | 510.00       | 72.20 Insufficient | 13.60 | 1.00    | 58.00    | 14.54      | Increasing   | 1.38       | 5.00      | 320.00  | 46.95  | Insufficient | 4.36       | 1.00       | 26.00   | 5.07 [   | Decreasing     |





|                   |          |       |     |       |       |                |         |     |      |       |                |         |       |        |           |                |         |          | Heav     | y Metal | Is             |         |     |       |       |              |          |         |       |       |                |
|-------------------|----------|-------|-----|-------|-------|----------------|---------|-----|------|-------|----------------|---------|-------|--------|-----------|----------------|---------|----------|----------|---------|----------------|---------|-----|-------|-------|--------------|----------|---------|-------|-------|----------------|
|                   | Site ID  |       |     | Alumi | nium  |                |         |     | Arse | enic  |                |         | C     | hromiu | m III + I | V              |         |          | Сор      | per     |                |         |     | Ir    | on    |              |          |         | Lea   | ad    |                |
| Location          | Site ID  | Mean  | Min | Max   | StdDv | MK Trend       | Mean    | Min | Max  | StdDv | MK Trend       | Mean    | Min   | Max    | StdDv     | MK Trend       | Mean    | Min      | Max      | StdDv   | MK Trend       | Mean    | Min | Max   | StdDv | MK Trend     | Mean     | Min     | Max   | StdDv | MK Trend       |
|                   | 1        | 13.38 | 5   | 49    | 14.68 | Insufficient   | -       | -   | -    | -     | Deficient valu | -       | -     | -      | -         | Deficient valu | 3.267   | 0.5      | 17       | 5.305   | Insufficient   | 1050    | 50  | 2970  | 1058  | Decreasing   | 0.511    | 0.1     | 1     | 0.465 | Insufficient   |
|                   | 2        | 6.375 | 5   | 11    | 2.066 | Insufficient   | -       |     | -    |       | Deficient valu | -       | -     |        | -         | Deficient valu | 69.39   | 0.5      | 280      | 105.8   | Increasing     | 1004    | 50  | 2390  | 958.5 | Insufficient | 0.511    | 0.1     | 1     | 0.465 | Increasing     |
|                   | 4        | 62.17 | 5   | 212   | 90.49 | Insufficient   | -       | -   | -    | -     | Deficient valu | -       | -     | -      | -         | Deficient valu | 2.129   | 0.5      | 8.3      | 2.774   | Insufficient   | 1206    | 39  | 4560  | 1665  | Insufficient | 0.971    | 0.1     | 4.1   | 1.437 | Insufficient   |
| <b>Lobbs Hole</b> | 25       | 10    | 5   | 38    | 9.839 | Insufficient   | 2.9     | 0.8 | 5    | 2.97  | Deficient valu | 0.6     | 0.2   | 1      | 0.566     | Deficient valu | 2.638   | 0.5      | 12       | 3.328   | Insufficient   | 2880    | 41  | 6100  | 2303  | Insufficient | 1.038    | 0.1     | 5     | 1.312 | Insufficient   |
|                   | 56       | 13.75 | 5   | 130   | 26.09 | Decreasing     | 0.421   | 0.2 | 1    | 0.322 | Decreasing     | 3.054   | 0.2   | 63     | 12.78     | Decreasing     | 7.308   | 0.5      | 25.8     | 6.087   | Decreasing     | 14.13   | 2   | 50    | 20    | Decreasing   | 0.396    | 0.1     | 2.3   | 0.55  | Decreasing     |
|                   | 57       | 24.33 | 5   | 165   | 42.36 | Decreasing     | 3.283   | 2   | 5.2  | 0.644 | Insufficient   | 0.3     | 0.2   | 1      | 0.24      | Decreasing     | 1.271   | 0.5      | 8        | 1.956   | Decreasing     | 26.83   | 2   | 147   | 44.65 | Decreasing   | 0.208    | 0.1     | 1     | 0.27  | Decreasing     |
|                   | 58       | 10.52 | 5   | 120   | 22.01 | Decreasing     | 0.37    | 0.2 | 1    | 0.283 | Insufficient   | 0.87    | 0.2   | 4      | 0.938     | Decreasing     | 34.82   | 0.5      | 191      | 49.27   | Decreasing     | 11.04   | 2   | 70    | 19.52 | Decreasing   | 1.452    | 0.2     | 4     | 1.085 | Insufficient   |
|                   |          |       |     |       |       |                |         |     |      |       |                |         |       |        |           |                |         | Nutrie   | nts, Inc | rganics | s, and TPH     |         |     |       |       |              |          |         |       |       |                |
| Foreston.         | C14 - ID |       |     | Amm   | onia  |                | Cyanide | 9   |      |       |                | Kjeldah | Nitro | gen    |           |                | Nitrate | + Nitrit | e        |         |                | Nitroge | n   |       |       |              | Total Pi | hosphoi | rus   |       |                |
| Location          | Site ID  | Mean  | Min | Max   | StdDv | MK Trend       | Mean    | Min | Max  | StdDv | MK Trend       | Mean    | Min   | Max    | StdDv     | MK Trend       | Mean    | Min      | Max      | StdDv   | MK Trend       | Mean    | Min | Max   | StdDv | MK Trend     | Mean     | Min     | Max   | StdDv | MK Trend       |
|                   | 1        | -     |     | 9     | -     | Deficient valu | -       | -   | -    | -     | Deficient vali | -       | -     | -      | -         | Deficient valu |         |          |          | -       | Deficient valu | 473.3   | 200 | 1800  | 512.8 | Insufficient | 53.33    | 10      | 90    | 40.41 | Insufficient   |
|                   | 2        | 2     |     |       |       | Deficient valu | -       | -   | -    | 43    | Deficient val  | -       | -     | -      | 4         | Deficient valu |         |          |          | -       | Deficient valu | 1604    | 60  | 13000 | 4274  | Increasing   | 173.3    | 60      | 290   | 115   | Insufficient   |
|                   | 4        | -     |     |       | -     | Deficient valu | -       |     | -    | -     | Deficient vali | -       | -     |        | -         | Deficient valu |         |          |          | -       | Deficient valu | 398.6   | 160 | 1500  | 488   | Increasing   | 110      | 110     | 110   | N/A   | Deficient valu |
| Lobbs Hole        | 25       | 160   | 160 | 160   | N/A   | Deficient valu | -       | -   | -    | -     | Deficient val  | 550     | 500   | 600    | 70.71     | Deficient valu | 25      | 20       | 30       | 7.071   | Deficient valu | 666.2   | 90  | 3060  | 820.8 | Insufficient | 978      | 10      | 4100  | 1761  | Insufficient   |
|                   | 56       | 68.29 | 1   | 370   | 96.64 | Decreasing     | 4       | 4   | 4    | 0     | Insufficient   | 464.9   | 2     | 2100   | 630.1     | Decreasing     | 271.4   | 1        | 4480     | 936.7   | Decreasing     | 720     | 2   | 5100  | 1189  | Decreasing   | 278.8    | 8       | 2230  | 578   | Decreasing     |
|                   | 57       | 74.54 | 3   | 310   | 75.08 | Decreasing     | 4       | 4   | 4    | 0     | Insufficient   | 846.5   | 2     | 4900   | 1239      | Decreasing     | 66.54   | 1        | 500      | 124.4   | Insufficient   | 900.8   | 2   | 4900  | 1231  | Decreasing   | 1518     | 12      | 10800 | 2482  | Decreasing     |
|                   | 58       | 39.79 | 1   | 280   | 60.21 | Decreasing     | 4       | 4   | 4    | 0     | Insufficient   | 1672    | 9     | 5400   | 1570      | Insufficient   | 10749   | 10       | 23500    | 6799    | Insufficient   | 12396   | 13  | 26300 | 7663  | Insufficient | 55.25    | 2       | 310   | 67.93 | Decreasing     |

|            |         |         |        | Manga | nese      |               |        |          | Nic    | kel   |              |         |         | Sil      | ver          |                 |         |        |        | Zinc  |                  |
|------------|---------|---------|--------|-------|-----------|---------------|--------|----------|--------|-------|--------------|---------|---------|----------|--------------|-----------------|---------|--------|--------|-------|------------------|
| Location   | Site ID | Mean    | Min    | Max   | StdDv     | MK Trend      | Mean   | Min      | Max    | StdDv | MK Trend     | Mean    | Min     | Max      | StdDv        | MK Trend        | Mean    | Min    | Max    | StdDv | MK Trend         |
|            | 1       | 177.1   | 58     | 227   | 50.55     | Decreasing    | 11.63  | 1        | 22     | 8.713 | Insufficient | 2.228   | 0.01    | 5        | 2.63         | Increasing      | 3.667   | 1      | 6      | 1.936 | Insufficient     |
|            | 2       | 196.3   | 150    | 245   | 32.12     | Insufficient  | 9.678  | 2.2      | 28     | 8.73  | Insufficient | 2.228   | .0.1    | 5        | 2.63         | Increasing      | 8.444   | 1      | 25     | 8.705 | Increasing       |
|            | 4       | 387     | 69     | 1370  | 477.8     | Insufficient  | 19.7   | 3        | 39.7   | 14.64 | Insufficient | 1.463   | 0.04    | 5        | 2.435        | Insufficient    | 5.143   | 1      | 19     | 6.336 | Increasing       |
| Lobbs Hole |         | 1046    | 91.8   | 1440  | 436.6     | Insufficient  | 20.3   | 3.1      | 74.7   | 24.09 | Decreasing   | 2.389   | 0.01    | 5        | 2.53         | Insufficient    | 23.54   | 1      | 96     | 34.82 | Insufficient     |
|            | 56      | 33.67   | 5      | 108   | 20.6      | Decreasing    | 0.767  | 0.5      | 2.2    | 0.457 | Decreasing   | 0.406   | 0.01    | 5        | 1.045        | Insufficient    | 4.333   | 1      | 13     | 2.278 | Insufficient     |
|            | 57      | 132.2   | 15     | 249   | 53.74     | Decreasing    | 2.975  | 0.5      | 13     | 3.596 | Decreasing   | 0.124   | 0.01    | 1        | 0.273        | Insufficient    | 1.667   | 1      | 5      | 1.435 | Decreasing       |
|            | 58      | 32.64   | 9.4    | 166   | 40.09     | Increasing    | 2.7    | 0.7      | 7.2    | 1.515 | Insufficient | 0.335   | 0.01    | 5        | 0.982        | Decreasing      | 11.3    | 1      | 56     | 10.51 | Decreasing       |
| -          |         | Reactiv | e Phos | horus | as P (fil | tered)        | Hardne | ss as Ca | CO3 (n | ng/L) |              | Total S | uspende | ed Solid | ds (mg/l     | _)              | Oil and | Grease | (ug/L) |       |                  |
| Location   | Site ID | Mean    | Min    | Max   | StdDv     | MK Trend      | Mean   | Min      | Max    | StdDv | MK Trend     | Mean    | Min     | Max      | StdDv        | MK Trend        | Mean    | Min    | Max    | StdDv | MK Trend         |
|            | 1       | 50      | 50     | 50    | 0         | Insufficient  | 200.8  | 129      | 340    | 81.5  | Insufficient | -       | -       | -        | -            | Deficient value | -       | -      | -      | -     | Deficient values |
|            | 2       | 50      | 50     | 50    | 0         | Insufficient  | 169.2  | 160      | 186    | 10.71 | Insufficient | -       | -       | -        | -            | Deficient value | -       | -      | -      | -     | Deficient values |
|            | 4       | 50      | 50     | 50    | 0         | Deficient val | 193.8  | 173      | 238    | 27.18 | Insufficient | -       | -       | =        | -:           | Deficient value | -       | -      | -      | -     | Deficient values |
| Lobbs Hole | 25      | 40      | 10     | 50    | 18.52     | Insufficient  | 245.4  | 233      | 265    | 13.24 | Insufficient | 332     | 332     | 332      | <u>(2</u> 3) | Deficient value | _       | 2      | 2      | 2     | Deficient values |
|            | 56      | 43.13   | 2      | 590   | 122       | Insufficient  | 99     | 12       | 200    | 73.91 | Insufficient | 434.7   | 54      | 3470     | 712.7        | Insufficient    | 3.087   | 1      | 5      | 2.043 | Insufficient     |
|            | 57      | 13.48   | 10     | 70    | 13.01     | Insufficient  | 128.8  | 116      | 145    | 12.01 | Insufficient | 1171    | 29      | 8690     | 1917         | Decreasing      | 3.708   | 1      | 10     | 2.789 | Insufficient     |
|            | 58      | 12.57   | -      | 70    | 44.00     | Insufficient  | 65.83  | 11       |        | 27.05 | Decreasing   | 111.1   | 8       | 464      | 122.0        | Insufficient    | 3.259   |        | -      | 1 000 | Insufficient     |

Insufficient Insufficient data to identify whether a signficant trend exists

Statistically signficant evidence of an increasing trend

Decreasing Statistically signficant evidence of a decreasing trend

Deficient valu Not enough reported values to undertake Mann-Kenndall analysis

Decreasing \* Decreasing trend is attributed to detection limit being adjusted/reduced during the sample period.





## APPENDIX B - BACKGROUND CONDITIONS

## **SURFACE WATER**

|                                                          | PLATEAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RAVINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Major watercourses1 (Dry weather)                        | • pH generally ranges between 6.2 and 8.5, with occasional lower and upper bound exceedances.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | • pH ranges between 6.2 to 8.5, with occasional lower and upper bound exceedances.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                          | <ul> <li>Carbonate and salinity vary seasonally, with higher levels occurring in summer/autumn than winter/spring.</li> <li>Low concentrations of suspended solids and low turbidity.</li> <li>Total nitrogen and phosphorus concentrations exceeded WQO values occasionally.</li> <li>Aluminium concentrations exceeded the WQO value on a frequent basis. Some exceedances were more than 4 x WQO values.</li> <li>Copper, iron, lead and zinc concentrations exceeded WQO values.</li> <li>Copper, iron, lead and zinc concentrations exceeded WQO values on an occasional basis. Other metals are generally below WQO values</li> <li>The water quality during wet weather conditions is poorly understood. It is expected that</li> </ul> | Low concentrations of suspended solids and low turbidity.     Carbonate and salinity vary seasonally, with higher levels occurring in summer/autumn than winter/spring.     Total nitrogen and phosphorus concentrations exceeded WQO values occasionally.     Aluminium concentrations in the Yarrangobilly River exceeded WQO values frequently in winter/spring and occasionally in summer/autumn. Some exceedances were more than 4 x WQO values.     Copper, chromium and zinc concentrations exceeded WQO values occasionally. Other metals are generally below WQO values. |
|                                                          | concentrations of suspended sediment, nutrients, and some metals would be higher than dry weather concentrations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • The understanding of water quality during wet weather conditions is informed by data from monitoring undertaken in March and May 2019 following moderate rainfall. Available data indicates that receiving water quality during wet weather conditions is generally poorer relative to dry weather conditions with higher turbidity, lower pH, higher nutrients and metals such as copper and zinc. The median (from five samples) copper concentration was 6 x the WQO value.                                                                                                  |
| Minor watercourses (near proposed surface infrastructure | The water quality of minor watercourses near the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | The water quality of minor watercourses in Lobs Hole is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |





|                                      | Tantangara construction compound is generally poorer than major watercourses, with total phosphorus, total nitrogen and aluminium all exceeding WQO values on a frequent basis. Turbidity, copper and iron exceeded WQO values on an occasional basis. | generally poorer than major watercourses, with turbidity, total phosphorus, copper and zinc exceeding WQO values on a frequent basis. Total nitrogen, arsenic and aluminium exceeded WQO values on an occasional basis.                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Runoff from existing disturbed areas | No sampling from existing disturbed areas has been undertaken at plateau.                                                                                                                                                                              | Runoff samples were collected from existing disturbed areas in Lobs Hole such as access tracks and remnant copper mining areas in May and March 2019. Disturbed area runoff is characterised as being mildly acidic, having very high suspended sediment and turbidity levels, high total nitrogen and total phosphorous, and very high aluminium and copper concentrations. During wet weather conditions (when runoff is occurring to local watercourses in Lobs Hole), the water quality in the Yarrangobilly River is expected to be degraded as it passes through Lobs Hole. |

Notes: 1. Major watercourses in plateau refer to the Murrumbidgee and Eucumbene rivers, Tantangara, Gooandra, Nungar and Kellys Plain creeks. Major watercourses in ravine refers to the Yarrangobilly River and Wallaces Creek.

- 2. General note: exceedances are described in the WCR as:
- frequent if the WQO value was exceeded in 20% or more of samples; and
- occasional if the WQO value was exceeded in at least one sample, but in less than 20% of samples.

#### **RESERVOIR**

#### **TALBINGO**

Water quality characteristics are described as follows:

- pH ranges between 6.3 and 8.2, with occasional lower and upper bound exceedances.
- Low concentrations of suspended solids and low turbidity.
- Carbonate and salinity vary seasonally, with higher levels occurring in summer/autumn, correlating w ith the higher salinity of streamflow over summer and autumn months.
- Oxidised nitrogen concentrations exceeded WQO values frequently in winter/spring and occasionally
  in summer/autumn. This is the opposite trend to the Yarrangobilly River, were exceedances are mor
  e likely to occur in summer/autumn.
- Ammonia concentrations frequently exceed WQO values during winter/spring, corelating with the ele vated oxidised nitrogen.
- Total phosphorus concentrations exceed WQO values in all summer/autumn samples and in approxi mately 25% of winter/spring samples.
- All dissolved metal concentrations were below WQO values except for:





\*Copper and zinc concentrations exceeded WQO values frequently in summer/autumn and occasion ally in winter/spring; and

\*Chromium (total) and lead concentrations occasionally exceeded WQO values in summer/autumn.

It is noted that all but one of the copper and zinc exceedances occurred during March 2018 sampling, where 80% of samples exceeded the WQO values. Different analysis methods (consistent with the methods applied more broadly to EIS sampling) were applied to subsequent sampling (post-March 2018).

Reservoir water quality during and following wet weather conditions is poorly understood. There is p
otential for elevated turbidity, nutrients and some metals to occur near watercourse inflow locations f
or several weeks following a substantial runoff event.

#### **TANTANGARA**

Water quality characteristics are described as follows:

- pH ranges between 6.6 and 8.0, with one lower and upper bound exceedance occurring.
- Low levels of suspended solids and low turbidity.
- Carbonate and salinity vary seasonally, with higher levels occurring in summer/autumn.
- Oxidised nitrogen and ammonia occasionally exceeded WQO values in summer/autumn.
- Total phosphorus frequently exceeded WQO values in summer/autumn and winter/spring while rea ctive phosphorus occasionally exceeded WQO values.
- All dissolved metal concentrations were below WQO values except for:
  - \* aluminium concentrations exceeded WQO values on a frequent babasis:
  - \*copper, iron and zinc exceeded WQO values on a frequent basis during summer/autumn; and \*chromium (total), cobalt and lead exceeded WQO values on an occasional basis during summer/autumn.

It is noted that all of the copper exceedances and the zinc exceedances occurred during March 20 18 sampling, where 100% of samples exceeded the WQO values. Different analysis methods (consistent with the methods applied more broadly to EIS sampling) were applied to subsequent sampling (post-March 2018).

Reservoir water quality during and following wet weather conditions is poorly understood. There is p
otential for elevated turbidity, nutrients and some metals to occur near watercourse inflow locatio
ns for several weeks following a substantial runoff event.





# APPENDIX C – EPL WATER RESULTS EPL MONTHLY MONITORING SEPTEMBER 2023





## Snowy Hydro 2.0 Main Works Monthly EPL Sampling: 01-30 September 2023 Groundwater

| Analyte                                 | Unit         | Limit of Reporting | Water Quality Objective Value*   |
|-----------------------------------------|--------------|--------------------|----------------------------------|
| Physiochemical                          |              |                    |                                  |
| pH                                      | pH Unit      | -                  | 6.5-8                            |
| Electrical Conductivity                 | μS/cm        | -                  | 30-350                           |
| Oxidation Reduction Potential           | mV           | -                  | No Water Quality Objective Value |
| Temperature                             | °C           | -                  | No Water Quality Objective Value |
| Dissolved Oxygen                        | % saturation | -                  | No Water Quality Objective Value |
| Turbidity                               | NTU          | -                  | No Water Quality Objective Value |
| aboratory analytes                      |              |                    |                                  |
| TSS                                     | mg/L         | 5                  | No Water Quality Objective Value |
| Hardness as CaCO3                       | mg/L         | 1                  | No Water Quality Objective Value |
| lutrients                               |              |                    |                                  |
| Ammonia as N                            | μg/L         | 5                  | 13                               |
| Nitrite + Nitrate as N (Nox)            | μg/L         | 10                 | 15                               |
| Kjeldahl Nitrogen Total                 | μg/L         | 10                 | No Water Quality Objective Value |
| Nitrogen (Total)                        | μg/L         | 10                 | 250                              |
| Reactive Phosphorus                     | μg/L         | 1                  | 15                               |
| Phosphorus (Total)                      | μg/L         | 5                  | 20                               |
| norganics                               | Por-         | <del></del>        |                                  |
| Cyanide Total                           | μg/L         | 4                  | 4                                |
| tydrocarbons                            | P6/ -        | <del></del>        | -                                |
| Oil and Grease                          | mg/L         | 5                  | 5                                |
| *************************************** | mg/ c        | 3                  |                                  |
| Metals (4:                              |              | <u> </u>           |                                  |
| Aluminium (dissolved)                   | μg/L         | 5                  | 27                               |
| Aluminium (total)                       | μg/L         | 5                  | No Water Quality Objective Value |
| Arsenic (dissolved)                     | μg/L         | 1                  | 0.8                              |
| Arsenic (total)                         | μg/L         | 1                  | No Water Quality Objective Value |
| Chromium (III+VI) (dissolved)           | μg/L         | 1                  | 0.01                             |
| Chromium (III+VI) (total)               | μg/L         | 1                  | No Water Quality Objective Value |
| Copper (dissolved)                      | μg/L         | 1                  | 1                                |
| Copper (total)                          | μg/L         | 1                  | No Water Quality Objective Value |
| Iron (dissolved)                        | μg/L         | 50                 | 300                              |
| Iron (total)                            | μg/L         | 50                 | No Water Quality Objective Value |
| Lead (dissolved)                        | μg/L         | 1                  | 1                                |
| Lead (total)                            | μg/L         | 1                  | No Water Quality Objective Value |
| Manganese (dissolved)                   | μg/L         | 5                  | 1,200                            |
| Manganese (total)                       | μg/L         | 5                  | No Water Quality Objective Value |
| Nickel (dissolved)                      | μg/L         | 1                  | 8                                |
| Nickel (total)                          | μg/L         | 1                  | No Water Quality Objective Value |
| Silver (dissolved)                      | μg/L         | 5                  | 0.02                             |
| Silver (total)                          | μg/L         | 5                  | No Water Quality Objective Value |
| Zinc (dissolved)                        | μg/L         | 5                  | 2.4                              |
| Zinc (total)                            | μg/L         | 5                  | No Water Quality Objective Value |

| EPL56      | EPL57      | EPL58      | EPL68      | EPL69      |
|------------|------------|------------|------------|------------|
| 14/09/2023 | 14/09/2023 | 14/09/2023 | 16/09/2023 | 16/09/2023 |
| 7.98       | 8.26       | 6.4        | 6.22       | 6.59       |
| 277        | 298        | 347        | 26         | 36         |
| 149        | 66         | 231        | 310        | 298        |
| 18.87      | 19.65      | 17.55      | 15.09      | 16.21      |
| 12.5       | 5          | 66.7       | 66.1       | 70         |
| 688        | 264        | 29.9       | 118        | 40.7       |
|            |            |            |            |            |
| 489        | 685        | 386        | 126        | 88         |
| 124        | 140        | 79         | <1         | <1         |
|            |            |            |            |            |
| 80         | 30         | <10        | <10        | <10        |
| 60         | 380        | 13,600     | 1,450      | 150        |
| 2,100      | 300        | 1,600      | 500        | 200        |
| 2,200      | 700        | 15,200     | 2,000      | 400        |
| <10        | <10        | <10        | 10         | <10        |
| 270        | 210        | 30         | 140        | 20         |
|            |            |            |            |            |
| <4         | <4         | <4         | <4         | <4         |
|            |            |            |            |            |
| <1         | <1         | <1         | <5         | <5         |
|            |            |            |            |            |
| <5         | <5         | <5         | <5         | 86         |
| 8,320      | 15,100     | 5,000      | 2,900      | 2,690      |
| 0.3        | 3.3        | 0.3        | <0.2       | <0.2       |
| 3.4        | 10.1       | 10.7       | 0.7        | 1          |
| 0.3        | <0.2       | 0.3        | <0.2       | <0.2       |
| 26.8       | 31.5       | 13.8       | 2.8        | 3.6        |
| 9.4        | <0.5       | 191        | <0.5       | 0.8        |
| 105        | 162        | 426        | 3.7        | 5.7        |
| <2         | <2         | <2         | <2         | 49         |
| 12,600     | 19,200     | 9,030      | 2,400      | 2,460      |
| <0.1       | <0.1       | 1.1        | <0.1       | <0.1       |
| 70.7       | 45.4       | 57.8       | 2.2        | 2.8        |
| 23         | 115        | 29.4       | 7.6        | 7.1        |
| 471        | 740        | 204        | 190        | 110        |
| 1.1        | 0.6        | 1.9        | <0.5       | <0.5       |
| 33.8       | 64.4       | 18.5       | 3.3        | 3.4        |
| <0.01      | <0.01      | <0.01      | <0.01      | 0.08       |
| 0.19       | 0.13       | 0.07       | 0.09       | 0.41       |
| 3          | <1         | 10         | 4          | 13         |
| 140        | 76         | 40         | 15         | 35         |

Water Quality Objective values for groundwater refer to the default trigger values for physical and chemical stressors in south-east Australia (upland rivers) for the protection of 99% of aquatic species ANZECC / ARMCANZ (2000), they are not pollutant limits imposed by EPL 21266.





# Snowy Hydro 2.0 Main Works Monthly EPL Sampling: 01 - 30 September 2023 - Talbingo and Tantangara Reservoir

| Analyte                                  | Unit         | Limit of<br>Reporting | Water Quality Objective Value*   |
|------------------------------------------|--------------|-----------------------|----------------------------------|
| Field                                    |              |                       |                                  |
| pH                                       | pH Unit      | -                     | 6.5-8                            |
| Electrical Conductivity                  | μS/cm        | -                     | 20-30                            |
| Oxidation Reduction Potential            | mV           | -                     | No Water Quality Objective Value |
| Temperature                              | °C           | -                     | No Water Quality Objective Value |
| Dissolved Oxygen                         | % saturation | -                     | 90-110                           |
| Turbidity                                | NTU          | -                     | 1-20                             |
| Laboratory analytes                      |              | i                     |                                  |
| Total suspended solids                   | mg/L         | 5                     | No Water Quality Objective Value |
| Hardness as CaCO <sub>3</sub> (filtered) | mg/L         | 1                     | No Water Quality Objective Value |
| Nutrients                                | <u> </u>     | i                     |                                  |
| Ammonia as N                             | μg/L         | 5                     | 10                               |
| Nitrite + Nitrate as N (NOx)             | μg/L         | 10                    | 10                               |
| Kjeldahl Nitrogen Total                  | μg/L         | 10                    | No Water Quality Objective Value |
| Nitrogen (Total)                         | μg/L         | 10                    | 350                              |
| Reactive Phosphorus                      | μg/L         | 1                     | 5                                |
| Phosphorus (Total)                       | μg/L         | 5                     | 10                               |
| Inorganics                               |              |                       |                                  |
| Cyanide Total                            | μg/L         | 4                     | 7                                |
| Hydrocarbons                             | i            |                       | i                                |
| Oil and Grease                           | mg/L         | 5                     | 5                                |
| Metals                                   |              |                       |                                  |
| Aluminium (dissolved)                    | μg/L         | 5                     | 55                               |
| Arsenic (dissolved)                      | μg/L         | 0.2                   | 13                               |
| Chromium (III+VI) (dissolved)            | μg/L         | 0.2                   | 1                                |
| Copper (dissolved)                       | μg/L         | 0.5                   | 14                               |
| Iron (dissolved)                         | μg/L         | 2                     | 300                              |
| Lead (dissolved)                         | μg/L         | 0.1                   | 3.4                              |
| Manganese (dissolved)                    | μg/L         | 0.5                   | 1,900                            |
| Nickel (dissolved)                       | μg/L         | 0.5                   | 11                               |
| Silver (dissolved)                       | μg/L         | 0.01                  | 0.05                             |
| Zinc (dissolved)                         | μg/L         | 1                     | 8                                |
| Biological                               | 1            | i                     | i                                |
| Faecal Coliforms                         | CFU/100mL    | 1                     | 10/100^                          |
| Biochemical Oxygen Demand                | mg/L         | 2                     | 1/5^                             |

| EPL10   | EPL11   | EPL28   | EPL29   | EPL32   | EPL38   | EPL39   | EPL40   | EPL51   |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 17/9/23 | 17/9/23 | 20/9/23 | 21/9/23 | 20/9/23 | 20/9/23 | 20/9/23 | 20/9/23 | 20/9/23 |
| 8.26    | 8.34    | 6.29    | 7.21    | 6.66    | 6.96    | 7       | 6.59    | 6.94    |
| 88      | 94      | 26      | 299     | 42      | 22      | 27      | 30      | 23      |
| 311     | 312     | 163     | 231     | 255     | 178     | 279     | 289     | 190     |
| 15.3    | 13.51   | 13.26   | 12.45   | 14.14   | 13.52   | 13.65   | 13.21   | 13.11   |
| 193.2   | 165.6   | 171.1   | 194.6   | 175.3   | 162.3   | 195.4   | 228.5   | 178.7   |
| 0       | 0       | 53.5    | 44.2    | 2.7     | 121     | 3.5     | 13.1    | 95.7    |
|         | •       | •       | •       | •       | •       | •       |         |         |
| <5      | <5      | 476     | 24      | 22      | 473     | 41      | 22      | 140     |
| 36      | 28      | 2       | 2       | 2       | <1      | <1      | 2       | 2       |
|         |         |         |         |         |         |         |         |         |
| <10     | <10     | 70      | <10     | <10     | 50      | <10     | <10     | 20      |
| 40      | 30      | 10      | 20      | 20      | 40      | 10      | 10      | 20      |
| 100     | 100     | 800     | 300     | 400     | 1,000   | 300     | 300     | 400     |
| 100     | 100     | 800     | 300     | 400     | 1,000   | 300     | 300     | 400     |
| <10     | <10     | <10     | <10     | <10     | <10     | <10     | <10     | <10     |
| 10      | 10      | 210     | 20      | 30      | 150     | 20      | 20      | 120     |
|         |         |         |         |         |         |         |         |         |
| <4      | <4      | <4      | <4      | <4      | <4      | <4      | <4      | <4      |
|         |         |         |         |         |         |         |         |         |
| <1      | <1      | <1      | <1      | <1      | <1      | <1      | <1      | <1      |
|         | •       |         | •       | •       | •       | •       |         |         |
| 10      | 9       | 16      | 28      | 27      | 31      | 17      | 16      | 47      |
| 0.3     | 0.3     | <0.2    | <0.2    | <0.2    | <0.2    | <0.2    | <0.2    | 0.2     |
| <0.2    | <0.2    | <0.2    | <0.2    | <0.2    | <0.2    | <0.2    | <0.2    | <0.2    |
| <0.5    | <0.5    | <0.5    | <0.5    | <0.5    | <0.5    | <0.5    | <0.5    | <0.5    |
| 26      | 18      | 138     | 115     | 110     | 141     | 72      | 90      | 130     |
| <0.1    | <0.1    | <0.1    | <0.1    | <0.1    | <0.1    | <0.1    | <0.1    | <0.1    |
| 13      | 9.2     | 42.7    | 75      | 43.3    | 12.2    | 6.8     | 9.6     | 64.1    |
| <0.5    | <0.5    | <0.5    | <0.5    | <0.5    | <0.5    | <0.5    | 0.7     | <0.5    |
| < 0.01  | <0.01   | <0.01   | <0.01   | <0.01   | <0.01   | <0.01   | <0.01   | < 0.01  |
| <1      | <1      | <1      | <1      | <1      | <1      | <1      | <1      | <1      |
|         |         |         |         |         |         |         |         |         |
| 5       | 1       | 3       | -       | -       | -       | -       | -       | 2       |
| <2      | <2      | <2      | <2      | <2      | <2      | <2      | <2      | <2      |

<sup>\*</sup> Water Quality Objective values for Talbingo and Tantangara Reservoir refer to the default trigger values for physical and chemical stressors in south-east Australia (fresh lakes and reservoirs) for the protection of 95% of aquatic species ANZECC / ARMCANZ (2000), they are not pollutant limits imposed by EPL 21266.

<sup>\*\*</sup> Algal blooms can present as feacal coliforms - green tinge noted in Talbingo Resevroir water at time of sampling.

<sup>^ 90</sup>th percentile concentration limits / 100 percentile concentration limits

<sup>-</sup> Sample not required at this location.





## Snowy Hydro 2.0 Main Works Monthly EPL Sampling: 01 - 30 September 2023 - Surface Water

| Analyte                       | Unit         | Limit of<br>Reporting | Water Quality Objective Value*   |
|-------------------------------|--------------|-----------------------|----------------------------------|
| Field                         |              |                       |                                  |
| pH                            |              | -                     | 6.5-8                            |
| Electrical Conductivity       | μS/cm        | -                     | 30-350                           |
| Oxidation Reduction Potential | mV           | -                     | No Water Quality Objective Value |
| Temperature                   | *c           | _                     | No Water Quality Objective Value |
| Dissolved Oxygen              | % saturation |                       | 90-110                           |
| Turbidity                     | NTU          |                       | 2-25                             |
| Laboratory analytes           |              |                       |                                  |
| TSS                           | mg/L         | 5                     | No Water Quality Objective Value |
| Hardness as CaCO3             | mg/L         | 1                     | No Water Quality Objective Value |
| Nutrients                     |              |                       |                                  |
| Ammonia as N                  | μg/L         | 5                     | 13                               |
| Nitrite + Nitrate as N (NOx)  | μg/L         | 10                    | 15                               |
| Kjeldahl Nitrogen Total       | μg/L         | 10                    | No Water Quality Objective Value |
| Nitrogen (Total)              | μg/L         | 10                    | 250                              |
| Reactive Phosphorus           | μg/L         | 1                     | 15                               |
| Phosphorus (Total)            | μg/L         | 5                     | 20                               |
| Inorganics                    |              |                       |                                  |
| Cyanide Total                 | μg/L         | 4                     | 4                                |
| Hydrocarbons                  |              |                       |                                  |
| Oil and Grease                | mg/L         | 5                     | 5                                |
| Metals                        |              |                       |                                  |
| Aluminium (dissolved)         | μg/L         | 5                     | 27                               |
| Aluminium (total)             | μg/L         | 5                     | No Water Quality Objective Value |
| Arsenic (dissolved)           | μg/L         | 1                     | 0.8                              |
| Arsenic (total)               | μg/L         | 1                     | No Water Quality Objective Value |
| Chromium (III+VI) (dissolved) | μg/L         | 1                     | 0.01                             |
| Chromium (III+VI) (total)     | μg/L         | 1                     | No Water Quality Objective Value |
| Copper (dissolved)            | μg/L         | 1                     | 1                                |
| Copper (total)                | μg/L         | 1                     | No Water Quality Objective Value |
| Iron (dissolved)              | μg/L         | 50                    | 300                              |
| Iron (total)                  | μg/L         | 50                    | No Water Quality Objective Value |
| Lead (dissolved)              | μg/L         | 1                     | 1                                |
| Lead (total)                  | μg/L         | 1                     | No Water Quality Objective Value |
| Manganese (dissolved)         | μg/L         | 5                     | 1,200                            |
| Manganese (total)             | μg/L         | 5                     | No Water Quality Objective Value |
| Nickel (dissolved)            | μg/L         | 1                     | 8                                |
| Nickel (total)                | μg/L         | 1                     | No Water Quality Objective Value |
| Silver (dissolved)            | μg/L         | 5                     | 0.02                             |
| Silver (total)                | μg/L         | 5                     | No Water Quality Objective Value |
| Zinc (dissolved)              | μg/L         | 5                     | 2.4                              |
| Zinc (total)                  | μg/L         | 5                     | No Water Quality Objective Value |

|              |            |             |             |            |            |             |             |             | Г            |            |            |            |          |            |            |            |            |            |               |       |       |               |
|--------------|------------|-------------|-------------|------------|------------|-------------|-------------|-------------|--------------|------------|------------|------------|----------|------------|------------|------------|------------|------------|---------------|-------|-------|---------------|
| ]            | EPL5       | EPL6        | EPL8        | EPL9       | EPL12      | EPL14       | EPL15       | EPL16       | EPL24        | EPL26      | EPL27      | EPL30      | EPL31    | EPL33      | EPL34      | EPL35      | EPL36      | EPL37      | EPL52         | EPL53 | EPL54 | EPL55         |
| ╣            | 13/09/23   | 13/09/23    | 13/09/23    | 13/09/23   | 13/09/23   | 13/09/23    | 13/09/23    | 13/09/23    | 13/09/23     | 23/09/23   | 23/09/23   | 16/09/23   | 16/09/23 | 16/09/23   | 16/09/23   | 16/09/23   | 16/09/23   | 16/09/23   | 14/09/23      | -     | -     | 14/09/23      |
| 1            | 5.88       | 7.32        | 7.83        | 7.8        | 6.76       | 7.64        | 7.85        | 7.83        | 7.02         | 7.35       | 8.19       | 7.43       | 7.06     | 7.64       | 7.5        | 7.88       | 7.09       | 7.27       | 8.68          | -     | -     | 8.07          |
| 1            | 174        | 77          | 78          | 80         | 81         | 74          | 73          | 79          | 111          | 42         | 356        | 27         | 23       | 23         | 18         | 15         | 47         | 52         | 634           | -     | -     | 289           |
|              | 261        | 219         | 197         | 197        | 228        | 201         | 196         | 186         | 198          | 213        | 172        | 232        | 250      | 216        | 212        | 180        | 214        | 196        | 176           | -     | -     | 188           |
| ]            | 13.15      | 11.16       | 13.23       | 15.34      | 12.19      | 12.52       | 13.04       | 15.51       | 16.47        | 8.42       | 8.38       | 15.35      | 14.91    | 13.95      | 14.46      | 13.78      | 15.15      | 16.41      | 17.05         |       | -     | 16.87         |
|              | 128.3      | 84.6        | 65.5        | 87.3       | 82.1       | 77.1        | 79          | 64.4        | 52.7         | 118.2      | 225.5      | 81.2       | 97.2     | 75.1       | 75.3       | 80.2       | 94.8       | 88.9       | 77.9          | -     | -     | 85.8          |
|              | 0          | 0           | 0           | 0          | 0          | 0           | 0           | 0           | 0            | 0          | 0          | 34.3       | 28.7     | 20.9       | 27.2       | 25.9       | 27.8       | 38.6       | 4.9           |       | -     | 0             |
| 1            | <u> </u>   |             |             |            |            |             |             | _           |              |            |            |            | _        |            |            |            |            |            |               |       | _     |               |
| 1            | <5<br>33   | <5<br>36    | <5<br>36    | <5<br>36   | 6<br>33    | <5<br>36    | <5<br>36    | 6<br>36     | 6<br>35      | <5<br>12   | <5<br>12   | 17         | 2        | 9          | 12<br><1   | 10<br><1   | 7          | 16<br>13   | 19<br>182     | -     | -     | 47<br>83      |
| 1            | 33         | 30          | 30          | 30         | 33         | 30          | 30          | 30          | 33           | 44         | **         | ,          |          |            |            | 74         | 4.9        | 4.0        | 102           | -     |       | 03            |
| 1            | <10        | <10         | <10         | <10        | 20         | <10         | <10         | <10         | <10          | 100        | <10        | <10        | <10      | <10        | <10        | <10        | <10        | 10         | 10            | -     | -     | <10           |
| ]            | 20         | <10         | <10         | <10        | 200        | 10          | <10         | <10         | 1,420        | 30         | 250        | 20         | 10       | 20         | <10        | <10        | 60         | 70         | 21,500        | -     | -     | 15,000        |
| 4            | 100        | <100        | <100        | 100        | <100       | <100        | <100        | <100        | 200          | 200        | 200        | 300        | 400      | 200        | 300        | 300        | 700        | 600        | 2,500         | -     | -     | 1,300         |
| ╢            | 100<br><10 | <100<br><10 | <100<br><10 | 100<br><10 | 200<br><10 | <100<br><10 | <100<br><10 | <100<br><10 | 1,600<br><10 | 200<br><10 | 400<br><10 | 300<br><10 | 400      | 200<br><10 | 300<br><10 | 300<br><10 | 800<br><10 | 700<br><10 | 24,000<br><10 |       | -     | 16,300<br><10 |
| 1            | <10        | <10         | <10         | <10        | <10        | 10          | 20          | <10         | <10          | 70         | <10        | 20         | 40       | <10        | <10        | 10         | 40         | 50         | 30            | -     | -     | 20            |
| 1            |            |             | •           |            | •          | •           | •           |             |              |            |            |            | •        |            | •          |            |            |            |               |       |       |               |
| ]            | <4         | <4          | <4          | <4         | <4         | <4          | <4          | <4          | <4           | <4         | <4         | <4         | <4       | <4         | <4         | <4         | <4         | <4         | <4            | -     | -     | <4            |
| -            | <1         | <1          | <1          | <1         | <1         | <1          | <1          | <1          | <1           | <1         | <1         | <1         | <1       | <1         | <1         | <1         | <1         | <1         | <1            |       |       | <1            |
| ╣            | <1         | <1          | <1          | <1         | <1         | <1          | <1          | <1          | <1           | <1         | <1         | <1         | <1       | <1         | <1         | <1         | <1         | <1         | <1            | -     | -     | <1            |
| 1            | 10         | <5          | 10          | 10         | 11         | 10          | 10          | 11          | 5            | <5         | <5         | 12         | 15       | 28         | 19         | 20         | 91         | 85         | 9             | -     | -     | <5            |
| 1            | -          | -           | -           | -          | -          | -           | -           | -           | -            | -          | -          | -          | -        | -          | -          | -          | -          | -          | 716           | -     | -     | 1260          |
|              | 0.2        | <0.2        | 0.2         | 0.2        | 0.2        | 0.2         | 0.2         | 0.2         | <0.2         | <0.2       | <0.2       | <0.2       | <0.2     | <0.2       | <0.2       | <0.2       | 0.4        | 0.4        | 0.5           | -     | -     | <0.2          |
| 4            | -          | -           | -           | -          | -          | -           | -           | -           | -            | -          | -          | -          | -        | -          | -          | -          | -          | -          | 8.0           | -     | -     | 0.6           |
| $\parallel$  | <0.2       | <0.2        | <0.2        | <0.2       | <0.2       | <0.2        | <0.2        | <0.2        | 0.2          | 0.2        | 0.2        | <0.2       | <0.2     | <0.2       | <0.2       | <0.2       | 0.3        | 0.4        | 6.2           | -     | -     | 0.4<br>2.9    |
| 1            | <0.5       | <0.5        | <0.5        | <0.5       | <0.5       | <0.5        | <0.5        | <0.5        | <0.5         | <0.5       | <0.5       | <0.5       | <0.5     | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       | <0.5          | -     | -     | <0.5          |
| 1            | -          | -           | -           | -          | -          | -           | -           | -           | -            | -          |            | -          | -        | -          | -          | -          | -          | -          | 2             | -     | -     | 1.6           |
|              | 13         | 5           | 13          | 13         | 15         | 14          | 14          | 14          | 13           | 14         | 14         | 28         | 26       | 102        | 64         | 64         | 307        | 342        | <2            | -     | -     | 3             |
| 4            | -          | -           | -           | -          | -          | -           | -           | -           | -            | -          | -          | -          | -        | -          | -          | -          | -          | -          | 1060          | -     | -     | 1380          |
| $\parallel$  | <0.1       | <0.1        | <0.1        | <0.1       | <0.1       | <0.1        | <0.1        | <0.1        | <0.1         | <0.1       | <0.1       | <0.1       | <0.1     | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       | <0.1<br>3.1   | -     | -     | <0.1<br>4.4   |
| 1            | 1.3        | 2           | 1.3         | 2.8        | 1          | 1.2         | 1.4         | 1.9         | 52.4         | 2.7        | 2          | 1.4        | 2.2      | 25.1       | 2.6        | 2.6        | 5.4        | 11.6       | <0.5          | -     | -     | 0.5           |
| 1            | -          | -           | -           | -          | -          | -           | -           | -           | -            | -          | -          | -          | -        | -          | -          | -          | -          |            | 29.7          | -     | -     | 42.2          |
| ]            | <0.5       | <0.5        | <0.5        | <0.5       | <0.5       | <0.5        | <0.5        | <0.5        | <0.5         | <0.5       | <0.5       | <0.5       | <0.5     | <0.5       | <0.5       | <0.5       | 0.7        | 0.6        | <0.5          | -     | -     | <0.5          |
| 4            | -          | -           | -           | -          | -          | -           | -           | -           | -            | -          | -          | -          | -        | -          | -          | -          | -          | -          | 2.6           | -     | -     | 2.7           |
| $\mathbb{I}$ | <0.01      | <0.01       | <0.01       | <0.01      | <0.01      | <0.01       | <0.01       | <0.01       | <0.01        | <0.01      | <0.01      | <0.01      | <0.01    | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      | <0.01         | -     | -     | <0.01         |
| 1            | <1         | <1          | <1          | <1         | <1         | <1          | <1          | <1          | 4            | <1         | 2          | <1         | <1       | <1         | <1         | <1         | <1         | <1         | <0.01         | -     | -     | <0.01<br><1   |
| 1            | -          | -           | -           |            | -          | -           | -           | -           | -            | -          | -          |            | -        | -          |            | -          | -          | -          | 6             |       |       | 8             |

<sup>\*</sup> Water Quality Objective values for surface water refer to the default trigger values for physical and chemical stressors in south-east Australia (upland rivers) for the protection of 99% of aquatic species ANZECC / ARMCANZ (2000), they are not pollutant limits imposed by EPL 21266.

<sup>-</sup> Samples not required at this location





#### snowy 2.0

## Snowy Hydro 2.0 Main Works Monthly EPL Sampling: 01 - 30 September 2023 - Treated Water

|                                          |              | 1                  |                                  |
|------------------------------------------|--------------|--------------------|----------------------------------|
| Analyte                                  | Unit         | Limit of Reporting | Water Quality Objective Value*   |
| Flow Rate                                | İ            |                    |                                  |
| Inflow*                                  | ML/day       | -                  | -                                |
| Outflow"                                 | ML/day       | -                  | 4.32 (EPL 43 / 50)               |
| Field                                    |              |                    |                                  |
| pH                                       | pH Unit      | -                  | 6.5-8.5                          |
| Electrical Conductivity                  | μS/cm        | -                  | 700 (EPL 41) / 200 (EPL 50)      |
| Oxidation Reduction Potential            | mV           | -                  | No Water Quality Objective Value |
| Temperature                              | °C           | -                  | 15                               |
| Dissolved Oxygen                         | % saturation | -                  | No Water Quality Objective Value |
| Turbidity                                | NTU          | -                  | <25                              |
| Laboratory analytes                      |              |                    |                                  |
| Total suspended solids                   | mg/L         | 5                  | 5/10                             |
| Hardness as CaCO <sub>3</sub> (filtered) | mg/L         | 1                  | No Water Quality Objective Value |
| Nutrients                                |              |                    |                                  |
| Ammonia as N                             | μg/L         | 5                  | 200/2000^                        |
| Kjeldahl Nitrogen Total                  | μg/L         | 10                 | No Water Quality Objective Value |
| Nitrogen (Total)                         | μg/L         | 10                 | 350/-^                           |
| Reactive Phosphorus                      | μg/L         | 1                  | No Water Quality Objective Value |
| Phosphorus (Total)                       | μg/L         | 5                  | 100/300^                         |
| Inorganics                               |              |                    |                                  |
| Cyanide Total                            | μg/L         | 4                  | No Water Quality Objective Value |
| Hydrocarbons                             |              |                    |                                  |
| Oil and Grease                           | mg/L         | 5                  | 2/5^                             |
| Metals                                   |              |                    |                                  |
| Aluminium (dissolved)                    | μg/L         | 5                  | 55                               |
| Arsenic (dissolved)                      | μg/L         | 0.2                | 13                               |
| Chromium (III+VI) (dissolved)            | μg/L         | 0.2                | 1                                |
| Copper (dissolved)                       | μg/L         | 0.5                | 14                               |
| Iron (dissolved)                         | μg/L         | 2                  | 300                              |
| Lead (dissolved)                         | μg/L         | 0.1                | 3.4                              |
| Manganese (dissolved)                    | μg/L         | 0.5                | 1,900                            |
| Nickel (dissolved)                       | μg/L         | 0.5                | 11                               |
| Silver (dissolved)                       | μg/L         | 0.01               | 0.05                             |
| Zinc (dissolved)                         | μg/L         | 1                  | 8                                |
| Biological                               | İ            |                    |                                  |
| Faecal Coliforms                         | CFU/100mL    | 1                  | 10/100^                          |
| Biological Oxygen Demand                 | mg/L         | <5                 | 5                                |

| EPL 41     | EPL 43 | EPL 44 | EPL 45 | EPL 47 | EPL 48 | EPL 49 | EPL 50       |  |  |  |
|------------|--------|--------|--------|--------|--------|--------|--------------|--|--|--|
|            |        |        |        |        |        |        |              |  |  |  |
| 17/09/2023 |        |        |        |        |        |        | 17/09/2023   |  |  |  |
| -          | 0.0027 | 0.4473 | 0.0498 | 0.1531 | 0.0652 | 0.1218 | -            |  |  |  |
| -          | -      | -      | -      | -      | -      | -      | -            |  |  |  |
|            |        |        |        |        |        |        |              |  |  |  |
| 8.06       | -      | -      | -      | -      | -      | -      | 7.06         |  |  |  |
| 189        | -      | -      | -      | -      | -      | -      | 19           |  |  |  |
| 587        | -      |        | -      | -      | -      | -      | 174          |  |  |  |
| 10.54      | -      | -      | -      | -      | -      | -      | 12.34        |  |  |  |
| 154.9      | -      | -      | -      | -      | -      | -      | 55.7         |  |  |  |
| 0          | -      | -      | -      | -      | -      | -      | 8.8          |  |  |  |
|            |        |        |        |        |        |        |              |  |  |  |
| <5         | -      | -      | -      | -      | -      | -      | <5           |  |  |  |
| 24         | -      | -      | -      | -      | -      | -      | <1           |  |  |  |
|            |        |        |        |        |        |        |              |  |  |  |
| <10        | -      | -      | -      | -      | -      | -      | <10          |  |  |  |
| 100        | -      | -      | -      | -      | -      | -      | 200          |  |  |  |
| 200        | -      | -      | -      | -      | -      | -      | 300          |  |  |  |
| <10        | -      | -      | -      | -      | -      | -      | <10          |  |  |  |
| 20         | -      | -      | -      | -      | -      | -      | 10           |  |  |  |
|            |        |        |        |        |        |        |              |  |  |  |
| <4         | -      | -      | -      | -      | -      | -      | <4           |  |  |  |
|            |        |        |        |        |        |        |              |  |  |  |
| <1         | -      | -      | -      | -      | -      | -      | <1           |  |  |  |
|            |        |        |        |        |        |        |              |  |  |  |
| 64         | -      | -      | -      | -      | -      | -      | <5           |  |  |  |
| 0.2        | -      | -      | -      | -      | -      | -      | <0.2         |  |  |  |
| <0.2       | -      | -      | -      | -      | -      | -      | <0.2         |  |  |  |
| 6.6        | -      | -      | -      | -      | -      | -      | <0.5         |  |  |  |
| 8          | -      | -      | -      | -      | -      | -      | <2           |  |  |  |
| 0.2        | -      | -      | -      | -      | -      | -      | <0.1         |  |  |  |
| 0.6<br>2.6 | -      | -      | -      | -      | -      | -      | <0.5<br><0.5 |  |  |  |
| <0.01      | -      | -      | -      | -      | -      | -      | <0.5         |  |  |  |
| 141        | -      | -      | -      | -      | -      | -      | <1           |  |  |  |
| 141        |        |        |        |        |        | _      | 1,1          |  |  |  |
| <1         | -      | -      |        |        |        | _      | <1           |  |  |  |
| <2         | -      | -      | -      | -      | -      | -      | <2           |  |  |  |
|            |        |        |        |        |        | _      | N/4          |  |  |  |

Note: Treated water was not being discharged at Talbingo Reservoir at the time of EPL sampling. Due to the discharge to Talbingo Reservoir being limited through September, samples could not be coordinated to be collected while discharge was occurring.

There is no 100th percentile limit for Nitrogen (Total).

- Water Quality Objective values Treated Water reference the predicted values for physical and chemical stressors from the treatment plant as presented in the Main Works EIS.
- Samples not required at this location
- ^ 90 Percentile concentration limit/100 Percentile limit
- Inflows to STP and CWTP do not directly correspond to outflow at RO as much of the water is reused on site





## Snowy Hydro 2.0 Main Works Monthly EPL Sampling: 01 - 30 September 2023 - Treated Water

| 1/09/2023 2/09/2023 3/09/2023 3/09/2023 4/09/2023 5/09/2023 6/09/2023 7/09/2023 8/09/2023 9/09/2023 10/09/2023 11/09/2023 11/09/2023 12/09/2023 13/09/2023 14/09/2023 15/09/2023 16/09/2023 17/09/2023 18/09/2023 18/09/2023 19/09/2023 20/09/2023 21/09/2023 22/09/2023 22/09/2023 22/09/2023 22/09/2023 22/09/2023 22/09/2023 22/09/2023 22/09/2023 22/09/2023 22/09/2023 22/09/2023 22/09/2023 22/09/2023 22/09/2023 22/09/2023 22/09/2023 22/09/2023 22/09/2023 22/09/2023 22/09/2023 22/09/2023 22/09/2023 22/09/2023 22/09/2023 22/09/2023 22/09/2023 22/09/2023 22/09/2023 22/09/2023 22/09/2023 22/09/2023 22/09/2023 22/09/2023 22/09/2023 22/09/2023 |            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 2/09/2023 3/09/2023 4/09/2023 5/09/2023 6/09/2023 7/09/2023 8/09/2023 9/09/2023 10/09/2023 11/09/2023 12/09/2023 13/09/2023 14/09/2023 15/09/2023 16/09/2023 17/09/2023 18/09/2023 19/09/2023 21/09/2023 22/09/2023 22/09/2023 23/09/2023 24/09/2023 25/09/2023 26/09/2023 27/09/2023 27/09/2023 28/09/2023 28/09/2023 29/09/2023 29/09/2023                                                                                                                                                                                                                                                                                                                   | Date       |
| 3/09/2023 4/09/2023 5/09/2023 6/09/2023 7/09/2023 8/09/2023 9/09/2023 10/09/2023 11/09/2023 12/09/2023 13/09/2023 14/09/2023 15/09/2023 16/09/2023 17/09/2023 18/09/2023 20/09/2023 21/09/2023 22/09/2023 22/09/2023 24/09/2023 25/09/2023 26/09/2023 26/09/2023 27/09/2023 28/09/2023 28/09/2023 28/09/2023                                                                                                                                                                                                                                                                                                                                                   | 1/09/2023  |
| 4/09/2023 5/09/2023 6/09/2023 7/09/2023 8/09/2023 9/09/2023 10/09/2023 11/09/2023 12/09/2023 13/09/2023 14/09/2023 15/09/2023 16/09/2023 17/09/2023 18/09/2023 19/09/2023 20/09/2023 21/09/2023 22/09/2023 22/09/2023 24/09/2023 25/09/2023 25/09/2023 26/09/2023 27/09/2023 27/09/2023 28/09/2023 29/09/2023                                                                                                                                                                                                                                                                                                                                                  | 2/09/2023  |
| 5/09/2023 6/09/2023 7/09/2023 8/09/2023 9/09/2023 10/09/2023 11/09/2023 12/09/2023 13/09/2023 14/09/2023 15/09/2023 16/09/2023 17/09/2023 18/09/2023 20/09/2023 21/09/2023 22/09/2023 22/09/2023 24/09/2023 25/09/2023 26/09/2023 26/09/2023 27/09/2023 28/09/2023 28/09/2023 28/09/2023                                                                                                                                                                                                                                                                                                                                                                       | 3/09/2023  |
| 6/09/2023 7/09/2023 8/09/2023 9/09/2023 10/09/2023 11/09/2023 11/09/2023 13/09/2023 14/09/2023 15/09/2023 16/09/2023 17/09/2023 18/09/2023 20/09/2023 21/09/2023 22/09/2023 23/09/2023 24/09/2023 25/09/2023 26/09/2023 27/09/2023 28/09/2023 28/09/2023 29/09/2023                                                                                                                                                                                                                                                                                                                                                                                            | 4/09/2023  |
| 7/09/2023 8/09/2023 9/09/2023 10/09/2023 11/09/2023 11/09/2023 13/09/2023 14/09/2023 15/09/2023 16/09/2023 17/09/2023 18/09/2023 20/09/2023 21/09/2023 22/09/2023 23/09/2023 24/09/2023 25/09/2023 25/09/2023 26/09/2023 27/09/2023 28/09/2023 28/09/2023 29/09/2023                                                                                                                                                                                                                                                                                                                                                                                           | 5/09/2023  |
| 8/09/2023 9/09/2023 11/09/2023 11/09/2023 11/09/2023 13/09/2023 14/09/2023 15/09/2023 16/09/2023 17/09/2023 18/09/2023 20/09/2023 21/09/2023 22/09/2023 23/09/2023 24/09/2023 25/09/2023 25/09/2023 26/09/2023 27/09/2023 28/09/2023 28/09/2023 29/09/2023                                                                                                                                                                                                                                                                                                                                                                                                     | 6/09/2023  |
| 9/09/2023 10/09/2023 11/09/2023 12/09/2023 13/09/2023 14/09/2023 15/09/2023 16/09/2023 17/09/2023 18/09/2023 20/09/2023 21/09/2023 22/09/2023 23/09/2023 24/09/2023 25/09/2023 25/09/2023 26/09/2023 27/09/2023 28/09/2023 28/09/2023 29/09/2023                                                                                                                                                                                                                                                                                                                                                                                                               | 7/09/2023  |
| 10/09/2023 11/09/2023 12/09/2023 13/09/2023 14/09/2023 15/09/2023 16/09/2023 17/09/2023 18/09/2023 20/09/2023 21/09/2023 22/09/2023 23/09/2023 24/09/2023 25/09/2023 25/09/2023 26/09/2023 27/09/2023 28/09/2023 28/09/2023 28/09/2023                                                                                                                                                                                                                                                                                                                                                                                                                         | 8/09/2023  |
| 11/09/2023 12/09/2023 13/09/2023 14/09/2023 15/09/2023 16/09/2023 17/09/2023 18/09/2023 20/09/2023 21/09/2023 22/09/2023 23/09/2023 24/09/2023 25/09/2023 25/09/2023 26/09/2023 27/09/2023 28/09/2023 28/09/2023 29/09/2023                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9/09/2023  |
| 12/09/2023 13/09/2023 14/09/2023 15/09/2023 16/09/2023 17/09/2023 18/09/2023 20/09/2023 21/09/2023 22/09/2023 23/09/2023 24/09/2023 25/09/2023 25/09/2023 26/09/2023 27/09/2023 28/09/2023 28/09/2023 29/09/2023                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10/09/2023 |
| 13/09/2023 14/09/2023 15/09/2023 16/09/2023 17/09/2023 18/09/2023 20/09/2023 21/09/2023 22/09/2023 23/09/2023 24/09/2023 25/09/2023 25/09/2023 26/09/2023 27/09/2023 28/09/2023 28/09/2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11/09/2023 |
| 14/09/2023 15/09/2023 16/09/2023 17/09/2023 18/09/2023 19/09/2023 20/09/2023 21/09/2023 22/09/2023 23/09/2023 24/09/2023 25/09/2023 25/09/2023 26/09/2023 27/09/2023 28/09/2023 28/09/2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12/09/2023 |
| 15/09/2023 16/09/2023 17/09/2023 18/09/2023 19/09/2023 20/09/2023 21/09/2023 22/09/2023 23/09/2023 24/09/2023 25/09/2023 26/09/2023 27/09/2023 28/09/2023 28/09/2023 29/09/2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13/09/2023 |
| 16/09/2023 17/09/2023 18/09/2023 19/09/2023 20/09/2023 21/09/2023 22/09/2023 23/09/2023 24/09/2023 25/09/2023 26/09/2023 27/09/2023 28/09/2023 28/09/2023 28/09/2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14/09/2023 |
| 17/09/2023 18/09/2023 19/09/2023 20/09/2023 21/09/2023 22/09/2023 23/09/2023 24/09/2023 25/09/2023 26/09/2023 27/09/2023 28/09/2023 28/09/2023 29/09/2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15/09/2023 |
| 18/09/2023 19/09/2023 20/09/2023 21/09/2023 22/09/2023 23/09/2023 24/09/2023 25/09/2023 26/09/2023 27/09/2023 28/09/2023 28/09/2023 29/09/2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16/09/2023 |
| 19/09/2023 20/09/2023 21/09/2023 22/09/2023 23/09/2023 24/09/2023 25/09/2023 26/09/2023 27/09/2023 28/09/2023 28/09/2023 29/09/2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17/09/2023 |
| 20/09/2023<br>21/09/2023<br>22/09/2023<br>23/09/2023<br>24/09/2023<br>25/09/2023<br>26/09/2023<br>27/09/2023<br>28/09/2023<br>29/09/2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18/09/2023 |
| 21/09/2023<br>22/09/2023<br>23/09/2023<br>24/09/2023<br>25/09/2023<br>26/09/2023<br>27/09/2023<br>28/09/2023<br>29/09/2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19/09/2023 |
| 22/09/2023<br>23/09/2023<br>24/09/2023<br>25/09/2023<br>26/09/2023<br>27/09/2023<br>28/09/2023<br>29/09/2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20/09/2023 |
| 23/09/2023<br>24/09/2023<br>25/09/2023<br>26/09/2023<br>27/09/2023<br>28/09/2023<br>29/09/2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21/09/2023 |
| 24/09/2023<br>25/09/2023<br>26/09/2023<br>27/09/2023<br>28/09/2023<br>29/09/2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22/09/2023 |
| 25/09/2023<br>26/09/2023<br>27/09/2023<br>28/09/2023<br>29/09/2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23/09/2023 |
| 26/09/2023<br>27/09/2023<br>28/09/2023<br>29/09/2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24/09/2023 |
| 27/09/2023<br>28/09/2023<br>29/09/2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25/09/2023 |
| 28/09/2023<br>29/09/2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| 29/09/2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 30/09/2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30/09/2023 |

| EPL 43 *         | EPL 50 ^ |  |  |  |  |  |  |
|------------------|----------|--|--|--|--|--|--|
| Discharge volume |          |  |  |  |  |  |  |
| (Mega            |          |  |  |  |  |  |  |
| (6               | 0.78     |  |  |  |  |  |  |
|                  | 0.70     |  |  |  |  |  |  |
|                  | 0.27     |  |  |  |  |  |  |
| 0.34             | 0.27     |  |  |  |  |  |  |
| 0.34             |          |  |  |  |  |  |  |
|                  | 0.75     |  |  |  |  |  |  |
|                  | 0.73     |  |  |  |  |  |  |
|                  | 0.14     |  |  |  |  |  |  |
|                  | 0.14     |  |  |  |  |  |  |
|                  |          |  |  |  |  |  |  |
| _                | 0.12     |  |  |  |  |  |  |
| -                | 0.49     |  |  |  |  |  |  |
| -                | -        |  |  |  |  |  |  |
| -                | -        |  |  |  |  |  |  |
| -                | -        |  |  |  |  |  |  |
| -                | -        |  |  |  |  |  |  |
| -                | -        |  |  |  |  |  |  |
| -                | 0.11     |  |  |  |  |  |  |
| -                | -        |  |  |  |  |  |  |
| -                | -        |  |  |  |  |  |  |
| -                | -        |  |  |  |  |  |  |
| -                | -        |  |  |  |  |  |  |
| -                | -        |  |  |  |  |  |  |
| -                | -        |  |  |  |  |  |  |
| -                | -        |  |  |  |  |  |  |
| -                | -        |  |  |  |  |  |  |
| -                | -        |  |  |  |  |  |  |
| -                | 0.09     |  |  |  |  |  |  |
| -                | -        |  |  |  |  |  |  |
| -                | -        |  |  |  |  |  |  |
| -                | -        |  |  |  |  |  |  |
|                  |          |  |  |  |  |  |  |

| EPL 44 | EPL 45                        | EPL 47 | EPL 48 | EPL 49  |  |  |  |  |  |
|--------|-------------------------------|--------|--------|---------|--|--|--|--|--|
|        | Discharge volume (Megalitres) |        |        |         |  |  |  |  |  |
|        | 0.078                         | 0.168  | 0.0654 | 0.36891 |  |  |  |  |  |
|        | 0.0540                        | 0.1620 | 0.0670 | 0.3851  |  |  |  |  |  |
|        | 0.0480                        | 0.1480 | 0.0608 | 0.1540  |  |  |  |  |  |
|        | 0.048                         | 0.109  | 0.0477 | 0.115   |  |  |  |  |  |
|        | 0.05                          | 0.15   | 0.06   | 0.36    |  |  |  |  |  |
|        | 0.05                          | 0.17   | 0.07   | 0.45    |  |  |  |  |  |
|        | 0.06                          | 0.17   | 0.06   | 0.14    |  |  |  |  |  |
|        | 0.07                          | 0.22   | 0.08   | 0.13    |  |  |  |  |  |
|        | 0.04                          |        | 0.07   | 0.12    |  |  |  |  |  |
|        | 0.04                          | 0.01   | 0.08   | 0.11    |  |  |  |  |  |
|        | 0.05                          | 0.11   | 0.08   | 0.19    |  |  |  |  |  |
|        | 0.04                          | 0.19   | 0.06   | -       |  |  |  |  |  |
|        | 0.05                          | 0.13   | 0.06   | 0.04    |  |  |  |  |  |
|        | 0.05                          | 0.15   | 0.06   | 0.01    |  |  |  |  |  |
|        | 0.07                          | 0.15   | 0.07   | 0.01    |  |  |  |  |  |
|        | 0.04                          | 0.15   | 0.07   | 0.12    |  |  |  |  |  |
|        | 0.02                          | 0.15   | 0.07   | 0.06    |  |  |  |  |  |
|        | 0.02                          | 0.16   | 0.07   | 0.16    |  |  |  |  |  |
|        | 0.08                          | 0.12   | 0.06   | 0.20    |  |  |  |  |  |
|        | 0.04                          | 0.15   | 0.06   | 0.02    |  |  |  |  |  |
|        | 0.04                          | 0.08   | 0.07   | 0.32    |  |  |  |  |  |
|        | 0.05                          | 0.20   | 0.06   | 0.08    |  |  |  |  |  |
|        | 0.03                          | 0.14   | 0.07   | 0.15    |  |  |  |  |  |
|        | 0.04                          | 0.16   | 0.06   | 0.20    |  |  |  |  |  |
|        | 0.03                          | 0.12   | 0.06   | 0.07    |  |  |  |  |  |
|        |                               | 0.20   | 0.06   | 0.31    |  |  |  |  |  |
|        | 0.09                          | 0.18   | 0.06   | 0.24    |  |  |  |  |  |
|        |                               | 0.21   | 0.07   | 0.09    |  |  |  |  |  |
|        |                               | 0.23   | 0.07   | 0.27    |  |  |  |  |  |
|        |                               | 0.18   | 0.07   | 0.28    |  |  |  |  |  |

Note: The EPL discharge volume limit for EPL 43 and 50 is 4.32 megalitres per day. Compliance with this criteria was met during the reporting month.

EPL 44 volume inflows were not recorded in September 2023 due to the technology upgrades.

- \* The maximum flow rate capacity for Lobs Hole STP/PWTP during the reporting month was 4 L/s.
- ^ The maximum flow rate capacity for Tantangara STP/PWTP during the reporting month was 9 L/s
- Water not discharged on this day
- Flow meter non-operational. Water volumes are considered to be similar daily flows to those recorded for each respective plant as works progressed at the same rate.





## **EPL MONTHLY MONITORING OCTOBER 2023**





## <u>Snowy Hydro 2.0 Main Works</u> <u>Monthly EPL Sampling: 01-31 October 2023 Groundwater</u>

| Analyte                       | Unit         | Limit of Reporting | Water Quality Objective Value*   |
|-------------------------------|--------------|--------------------|----------------------------------|
| Physiochemical                |              |                    |                                  |
| pH                            | pH Unit      | -                  | 6.5-8                            |
| Electrical Conductivity       | μS/cm        | -                  | 30-350                           |
| Oxidation Reduction Potential | mV           | -                  | No Water Quality Objective Value |
| Temperature                   | °C           | -                  | No Water Quality Objective Value |
| Dissolved Oxygen              | % saturation | -                  | No Water Quality Objective Value |
| Turbidity                     | NTU          | -                  | No Water Quality Objective Value |
| aboratory analytes            |              |                    |                                  |
| TSS                           | mg/L         | 5                  | No Water Quality Objective Value |
| Hardness as CaCO3             | mg/L         | 1                  | No Water Quality Objective Value |
| Nutrients                     |              |                    |                                  |
| Ammonia as N                  | μg/L         | 5                  | 13                               |
| Nitrite + Nitrate as N (Nox)  | μg/L         | 10                 | 15                               |
| Kjeldahl Nitrogen Total       | μg/L         | 10                 | No Water Quality Objective Value |
| Nitrogen (Total)              | μg/L         | 10                 | 250                              |
| Reactive Phosphorus           | μg/L         | 1                  | 15                               |
| Phosphorus (Total)            | μg/L         | 5                  | 20                               |
| norganics                     |              |                    |                                  |
| Cyanide Total                 | μg/L         | 4                  | 4                                |
| Hydrocarbons                  |              |                    |                                  |
| Oil and Grease                | mg/L         | 5                  | 5                                |
| Metals                        |              |                    |                                  |
| Aluminium (dissolved)         | μg/L         | 5                  | 27                               |
| Aluminium (total)             | μg/L         | 5                  | No Water Quality Objective Value |
| Arsenic (dissolved)           | μg/L         | 1                  | 0.8                              |
| Arsenic (total)               | μg/L         | 1                  | No Water Quality Objective Value |
| Chromium (III+VI) (dissolved) | ug/L         | 1                  | 0.01                             |
| Chromium (III+VI) (total)     | μg/L         | 1                  | No Water Quality Objective Value |
| Copper (dissolved)            | μg/L         | 1                  | 1                                |
| Copper (total)                | μg/L         | 1                  | No Water Quality Objective Value |
| Iron (dissolved)              | μg/L         | 50                 | 300                              |
| Iron (total)                  | μg/L         | 50                 | No Water Quality Objective Value |
| Lead (dissolved)              | μg/L         | 1                  | 1                                |
| Lead (total)                  | μg/L         | 1                  | No Water Quality Objective Value |
| Manganese (dissolved)         | μg/L         | 5                  | 1,200                            |
| Manganese (total)             | μg/L         | 5                  | No Water Quality Objective Value |
| Nickel (dissolved)            | μg/L         | 1                  | 8                                |
| Nickel (total)                | μg/L         | 1                  | No Water Quality Objective Value |
| Silver (dissolved)            | μg/L         | 5                  | 0.02                             |
| Silver (total)                | μg/L         | 5                  | No Water Quality Objective Value |
| Zinc (dissolved)              | μg/L         | 5                  | 2.4                              |
| Zinc (total)                  | μg/L         | 5                  | No Water Quality Objective Value |

| EPL56     | EPL57     | EPLS8     | EPL68      | EPL69      | EPL70      |
|-----------|-----------|-----------|------------|------------|------------|
| 9/10/2023 | 9/10/2023 | 9/10/2023 | 10/10/2023 | 10/10/2023 | 12/10/2023 |
| 8.1       | 8.06      | 6.62      | 6.53       | 7.05       | 7.06       |
| 231       | 267       | 238       | 25         | 35         | 95         |
| 138       | 138       | 195       | 235        | 213        | 224        |
| 13.07     | 13.42     | 15.1      | 14.9       | 13.81      | 14.62      |
| 4.5       | 14.7      | 36.2      | 65.2       | 78.3       | 76.7       |
| 221       | 242       | 142       | 170        | 94         | 0          |
|           |           |           |            |            |            |
| 362       | 180       | 18        | 148        | 56         | 210        |
| 126       | 134       | 75        | <1         | 2          | 25         |
|           |           |           |            |            |            |
| <10       | 10        | 20        | 20         | 20         | 20         |
| 20        | <10       | 13,100    | 1,020      | 160        | 520        |
| <100      | 200       | 1,800     | 200        | 100        | 300        |
| <100      | 200       | 14,900    | 1,200      | 300        | 800        |
| <10       | <10       | 10        | <10        | <10        | 40         |
| 5         | 42        | 1         | 3          | <1         | 29         |
|           |           |           |            |            |            |
| <4        | <4        | <4        | <4         | <4         | <4         |
|           |           |           |            |            |            |
| <5        | <5        | <5        | <5         | <5         | <1         |
|           |           |           |            |            |            |
| 27        | 16        | <5        | 15         | 157        | <5         |
| 9,540     | 6,920     | 489       | 2,560      | 1,070      | 17,600     |
| 0.3       | 3.4       | 0.2       | <0.2       | <0.2       | <0.2       |
| 3.6       | 6.0       | 0.8       | 0.5        | 0.3        | 1.8        |
| <0.2      | <0.2      | 0.4       | 0.3        | 0.2        | <0.2       |
| 28.6      | 15.0      | 1.8       | 2.2        | 1.2        | 9.0        |
| 9.7       | 2.3       | 9.0       | 2.8        | 2.1        | <0.5       |
| 92.6      | 18.1      | 47.0      | 3.3        | 1.2        | 9.1        |
| 25        | 31        | 5         | 11         | 63         | <2         |
| 13,900    | 8,460     | 806       | 2,120      | 824        | 13,600     |
| 0.5       | <0.1      | 2.2       | <0.1       | 0.1        | <0.1       |
| 71.6      | 21.7      | 6.8       | 2.1        | 1.0        | 5.9        |
| 30.0      | 119       | 15.3      | 4.8        | 2.6        | 6.5        |
| 484       | 400       | 25.8      | 177        | 35.2       | 185        |
| <0.5      | 0.7       | 1.9       | 1.8        | <0.5       | <0.5       |
| 34.9      | 27.3      | 3.4       | 2.5        | 1.0        | 5.9        |
| <0.01     | 0.04      | 0.02      | <0.01      | <0.01      | <0.01      |
| 0.13      | 0.04      | <0.01     | 0.12       | <0.01      | 0.08       |
| 13        | 4         | 12        | 8          | 6          | 3          |
| 136       | 38        | 10        | 13         | 4          | 38         |

Water Quality Objective values for groundwater refer to the default trigger values for physical and chemical stressors in south-east Australia (upland rivers) for the protection of 99% of aquatic species ANZECC / ARMCANZ (2000), they are not pollutant limits imposed by EPL 21266.





## Snowy Hydro 2.0 Main Works Monthly EPL Sampling: 01 - 31 October 2023 - Talbingo and Tantangara Reservoir

| Analyte                                  | Unit         | Limit of<br>Reporting | Water Quality Objective Value*   |
|------------------------------------------|--------------|-----------------------|----------------------------------|
| Field                                    |              |                       |                                  |
| pH                                       | pH Unit      | -                     | 6.5-8                            |
| Electrical Conductivity                  | μS/cm        | -                     | 20-30                            |
| Oxidation Reduction Potential            | mV           | -                     | No Water Quality Objective Value |
| Temperature                              | °C           | -                     | No Water Quality Objective Value |
| Dissolved Oxygen                         | % saturation | -                     | 90-110                           |
| Turbidity                                | NTU          | -                     | 1-20                             |
| aboratory analytes                       |              |                       |                                  |
| Total suspended solids                   | mg/L         | 5                     | No Water Quality Objective Value |
| Hardness as CaCO <sub>3</sub> (filtered) | mg/L         | 1                     | No Water Quality Objective Value |
| Nutrients                                |              |                       |                                  |
| Ammonia as N                             | μg/L         | 5                     | 10                               |
| Nitrite + Nitrate as N (NOx)             | μg/L         | 10                    | 10                               |
| Kjeldahl Nitrogen Total                  | μg/L         | 10                    | No Water Quality Objective Value |
| Nitrogen (Total)                         | μg/L         | 10                    | 350                              |
| Reactive Phosphorus                      | μg/L         | 1                     | 5                                |
| Phosphorus (Total)                       | μg/L         | 5                     | 10                               |
| Inorganics                               |              |                       |                                  |
| Cyanide Total                            | μg/L         | 4                     | 7                                |
| Hydrocarbons                             |              |                       |                                  |
| Oil and Grease                           | mg/L         | 5                     | 5                                |
| Metals                                   |              |                       |                                  |
| Aluminium (dissolved)                    | μg/L         | 5                     | 55                               |
| Arsenic (dissolved)                      | μg/L         | 0.2                   | 13                               |
| Chromium (III+VI) (dissolved)            | μg/L         | 0.2                   | 1                                |
| Copper (dissolved)                       | μg/L         | 0.5                   | 14                               |
| Iron (dissolved)                         | μg/L         | 2                     | 300                              |
| Lead (dissolved)                         | μg/L         | 0.1                   | 3.4                              |
| Manganese (dissolved)                    | μg/L         | 0.5                   | 1,900                            |
| Nickel (dissolved)                       | μg/L         | 0.5                   | 11                               |
| Silver (dissolved)                       | μg/L         | 0.01                  | 0.05                             |
| Zinc (dissolved)                         | μg/L         | 1                     | 8                                |
| Biological                               |              |                       |                                  |
| Faecal Coliforms                         | CFU/100mL    | 1                     | 10/100^                          |
| Biochemical Oxygen Demand                | mg/L         | 2                     | 1/5^                             |

|         |         |          |          |          |          | 1        | 1        | <u> </u> |
|---------|---------|----------|----------|----------|----------|----------|----------|----------|
| EPL10   | EPL11   | EPL28    | EPL29    | EPL32    | EPL38    | EPL39    | EPL40    | EPL51    |
| 8/10/23 | 8/10/23 | 13/10/23 | 13/10/23 | 13/10/23 | 13/10/23 | 13/10/23 | 13/10/23 | 13/10/23 |
| 7.95    | 7.93    | 6.6      | 6.52     | 6.57     | 6.67     | 7.6      | 7.13     | 6.43     |
| 57      | 56      | 21       | 21       | 21       | 21       | 22       | 21       | 21       |
| 376     | 412     | 304      | 315      | 312      | 302      | 257      | 281      | 318      |
| 15.08   | 14.08   | 11.06    | 12.73    | 12.63    | 11.83    | 10.67    | 9.76     | 12.05    |
| 93.2    | 95.4    | 56       | 73.6     | 72.3     | 88.8     | 85.7     | 64.3     | 91.7     |
| 118     | 128     | 121      | 128      | 135      | 125      | 102      | 98.8     | 106      |
|         | _       | •        | •        | -        | -        | -        | -        |          |
| <5      | <5      | <5       | <5       | <5       | <5       | <5       | <5       | <5       |
| 28      | 28      | 2        | 2        | 2        | 2        | 2        | 2        | 2        |
|         |         |          |          |          |          |          |          | •        |
| <10     | <10     | 20       | <10      | 20       | 20       | <10      | 20       | <10      |
| <10     | <10     | 40       | 20       | 10       | 20       | 30       | 40       | 20       |
| 100     | 100     | 100      | 100      | 200      | 100      | 100      | <100     | 200      |
| 100     | 100     | 100      | 100      | 200      | 100      | 100      | <100     | 200      |
| <10     | <10     | <10      | <10      | <10      | <10      | <10      | <10      | <10      |
| <1      | <1      | <1       | <1       | 1        | <1       | <1       | <1       | 3        |
|         |         |          |          |          |          |          |          |          |
| <4      | <4      | <4       | <4       | <4       | <4       | <4       | <4       | <4       |
|         |         |          |          |          |          |          |          |          |
| <1      | <1      | <1       | <1       | <1       | <1       | <1       | <1       | <1       |
|         |         |          |          |          |          |          |          |          |
| 7       | 6       | 28       | 44       | 41       | 45       | 17       | 17       | 102      |
| 0.3     | 0.2     | <0.2     | <0.2     | <0.2     | <0.2     | <0.2     | <0.2     | <0.2     |
| <0.2    | <0.2    | <0.2     | <0.2     | <0.2     | <0.2     | <0.2     | <0.2     | <0.2     |
| <0.5    | <0.5    | <0.5     | <0.5     | <0.5     | <0.5     | <0.5     | <0.5     | 2.4      |
| 17      | 15      | 58       | 124      | 118      | 127      | 46       | 44       | 140      |
| <0.1    | <0.1    | <0.1     | <0.1     | <0.1     | <0.1     | <0.1     | <0.1     | 0.1      |
| 1.2     | 0.8     | 23.1     | 31.7     | 34.2     | 32.2     | 8.4      | 6.4      | 40.6     |
| <0.5    | <0.5    | <0.5     | <0.5     | <0.5     | <0.5     | <0.5     | <0.5     | <0.5     |
| < 0.01  | <0.01   | <0.01    | <0.01    | <0.01    | <0.01    | < 0.01   | <0.01    | < 0.01   |
| <1      | <1      | <1       | <1       | <1       | <1       | <1       | <1       | 2        |
|         |         |          |          |          |          |          |          |          |
| 2       | 3       | 15       | -        | -        | -        | -        | -        | 2        |
| <2      | <2      | <2       | <2       | <2       | 2        | <2       | 2        | <2       |

<sup>\*</sup> Water Quality Objective values for Talibingo and Tantangara Reservoir refer to the default trigger values for physical and chemical stressors in south-east Australia (fresh lakes and reservoirs) for the protection of 95% of aquatic species ANZECC / ARMCANZ (2000), they are not pollutant limits imposed by EPL 21266.

<sup>\*\*</sup> Algal blooms can present as feacal colliforms - green tinge noted in Talbingo Resevroir water at time of sampling.

<sup>^ 90</sup>th percentile concentration limits / 100 percentile concentration limits

Sample not required at this location.





## Snowy Hydro 2.0 Main Works Monthly EPL Sampling: 01 - 31 October 2023 - Surface Water

| Mont                          | hly EPL Samplin | ng: 01 - 31 Oc        | tober 2023 - Surface Water       | EPL5     | EPL6    | EPL8     | EPL9                                             | EPL12    | EPL14   | EPL15    | EPL16    | EPL24    | EPL26    | EPL27   | EPL30    | EPL31    | EPL33    | EPL34    | EPL35    | EPL36    | EPL37    | EPL52   | EPL53 | EPL54 | EPL55   |
|-------------------------------|-----------------|-----------------------|----------------------------------|----------|---------|----------|--------------------------------------------------|----------|---------|----------|----------|----------|----------|---------|----------|----------|----------|----------|----------|----------|----------|---------|-------|-------|---------|
| Analyte                       | Unit            | Limit of<br>Reporting | Water Quality Objective Value*   | EPLS     | EPL6    | EPLS     | EPL9                                             | EPLIZ    | EPL14   | EPLIS    | EPLIS    | EPL24    | EPLZ6    | EPL27   | EPL30    | EPLSI    | EPL33    | EPL34    | EPLSS    | EPLS6    | EPL37    | EPLSZ   | EPL53 | EPL54 | EPLSS   |
| Field                         |                 |                       |                                  | 6/10/23  | 6/10/23 | 6/10/23  | 6/10/23                                          | 6/10/23  | 6/10/23 | 6/10/23  | 6/10/23  | 6/10/23  | 3/10/23  | 3/10/23 | 10/10/23 | 10/10/23 | 10/10/23 | 10/10/23 | 10/10/23 | 10/10/23 | 10/10/23 | 9/10/23 |       |       | 9/10/23 |
| pH                            |                 | -                     | 6.5-8                            | 8.17     | 7.58    | 8.18     | 8.18                                             | 7.81     | 7.5     | 7.72     | 8.01     | 7.72     | 7.05     | 6.84    | 7.6      | 7.38     | 7.78     | 7.78     | 7.73     | 7.47     | 7.84     | 7.74    | -     | -     | 7.98    |
| Electrical Conductivity       | μS/cm           |                       | 30-350                           | 51       | 69      | 54       | 53                                               | 50       | 53      | 52       | 54       | 80       | 34       | 32      | 27       | 34       | 23       | 30       | 15       | 51       | 50       | 316     | -     | -     | 291     |
| Oxidation Reduction Potential | mV              |                       | No Water Quality Objective Value | 208      | 223     | 188      | 187                                              | 213      | 224     | 214      | 185      | 195      | 251      | 263     | 216      | 224      | 214      | 215      | 209      | 220      | 205      | 175     | -     | -     | 166     |
| Temperature                   | *c              |                       | No Water Quality Objective Value | 10.76    | 11.47   | 12.73    | 12.95                                            | 11.05    | 12.1    | 12.66    | 13.29    | 13.74    | 11.03    | 9.66    | 14.75    | 14.95    | 17.28    | 15.32    | 13.93    | 16.21    | 17.76    | 16.86   | -     | -     | 16.2    |
| Dissolved Oxygen              | % saturation    |                       | 90-110                           | 99.2     | 75.5    | 83.3     | 82.5                                             | 69.9     | 78.2    | 79       | 72.8     | 75.5     | 42.9     | 10.7    | 75.1     | 109      | 92.8     | 96.8     | 68.5     | 94.2     | 71.7     | 87.9    | -     | -     | 101.8   |
| Turbidity                     | NTU             |                       | 2-25                             | 139      | 130     | 136      | 132                                              | 140      | 135     | 135      | 127      | 183      | 61.4     | 62.9    | 91       | 90.8     | 89.2     | 86.6     | 78.6     | 117      | 132      | 106     |       | -     | 94.2    |
| Laboratory analytes           | -               |                       |                                  | 133      | 130     | 130      | 131                                              | 240      | 133     | 133      | 11,      | 103      | 01.4     | 02.5    |          | 50.0     | 03.2     | 00.0     | 70.0     | 117      | 132      | 100     |       |       | 34.2    |
| TSS                           | mg/L            | 5                     | No Water Quality Objective Value | 16       | 10      | 15       | 16                                               | 15       | 14      | 15       | 14       | 18       | 6        | 10      | 10       | 11       | <5       | <5       | <5       | <5       | 8        | <5      |       | -     | <5      |
| Hardness as CaCO3             | mg/L            | 1                     | No Water Quality Objective Value | 22       | 33      | 24       | 28                                               | 22       | 24      | 24       | 24       | 30       | 12       | 12      | 7        | 7        | 2        | <1       | <1       | 17       | 17       | 93      | -     | -     | 96      |
| Nutrients                     |                 |                       |                                  |          |         |          |                                                  |          |         |          |          |          |          |         |          |          |          |          |          |          |          |         |       |       | -       |
| Ammonia as N                  | μg/L            | 5                     | 13                               | <10      | <10     | <10      | <10                                              | <10      | <10     | <10      | <10      | 10       | <10      | <10     | 40       | 10       | 110      | <10      | 10       | 40       | 50       | <10     | -     | -     | <10     |
| Nitrite + Nitrate as N (NOx)  | μg/L            | 10                    | 15                               | 10       | <10     | 10       | 10                                               | 10       | <10     | 20       | 10       | 490      | 20       | 10      | 20       | <10      | 10       | <10      | <10      | 140      | 90       | 7,010   | -     | -     | 19,300  |
| Kjeldahl Nitrogen Total       | μg/L            | 10                    | No Water Quality Objective Value | 100      | 100     | <100     | 100                                              | 1,000    | 700     | 300      | 300      | 200      | 100      | 200     | 200      | 100      | 200      | 200      | 200      | 600      | 500      | 800     | -     | -     | 2,400   |
| Nitrogen (Total)              | μg/L            | 10                    | 250                              | 100      | 100     | <100     | 100                                              | 1,000    | 700     | 300      | 300      | 700      | 100      | 200     | 200      | 100      | 200      | 200      | 200      | 700      | 600      | 7,800   | -     | -     | 21,700  |
| Reactive Phosphorus           | μg/L            | 1                     | 15                               | <10      | <10     | <10      | <10                                              | <10      | <10     | <10      | <10      | <10      | <10      | <10     | <10      | <10      | <10      | <10      | <10      | <10      | <10      | <10     |       |       | <10     |
| Phosphorus (Total)            | μg/L            | 5                     | 20                               | 2        | 3       | <1       | 12                                               | 3        | 6       | 6        | 3        | 6        | 2        | 4       | 2        | 2        | 1        | 1        | 1        | 4        | 4        | <1      | -     | -     | <1      |
| Inorganics                    |                 |                       |                                  |          |         |          |                                                  |          |         |          |          |          |          |         |          |          |          |          |          |          |          |         |       |       |         |
| Cyanide Total                 | μg/L            | 4                     | 4                                | <4       | <4      | <4       | <4                                               | <4       | <4      | <4       | <4       | <4       | <4       | <4      | <4       | <4       | <4       | <4       | <4       | <4       | <4       | <4      |       |       | <4      |
| Hydrocarbons                  |                 |                       |                                  |          |         |          |                                                  |          |         |          |          |          |          |         |          |          |          |          |          |          |          |         |       |       |         |
| Oil and Grease                | mg/L            | 5                     | 5                                | <1       | <1      | <1       | <1                                               | <1       | <1      | <1       | <1       | <1       | <1       | <1      | <1       | <1       | <1       | <1       | <1       | <1       | <1       | <1      | -     | -     | <1      |
| Metals                        |                 |                       |                                  |          |         |          |                                                  |          |         |          |          |          |          |         |          |          |          |          |          |          |          |         |       |       |         |
| Aluminium (dissolved)         | μg/L            | 5                     | 27                               | 40       | 9       | 40       | 46                                               | 53       | 42      | 39       | 39       | 27       | 10       | 9       | 55       | 57       | 86       | 49       | 52       | 279      | 290      | 67      | -     | -     | <5      |
| Aluminium (total)             | μg/L            | 5                     | No Water Quality Objective Value |          |         |          |                                                  |          |         |          |          |          |          |         |          |          |          |          |          |          |          | 97      | -     | -     | 172     |
| Arsenic (dissolved)           | μg/L            | 1                     | 0.8                              | 0.2      | 0.2     | 0.2      | 0.2                                              | 0.2      | 0.2     | <0.2     | 0.2      | <0.2     | <0.2     | <0.2    | <0.2     | <0.2     | < 0.2    | 0.2      | <0.2     | 0.5      | 0.6      | 0.9     | -     | -     | <0.2    |
| Arsenic (total)               | μg/L            | 1                     | No Water Quality Objective Value |          |         |          |                                                  |          |         |          |          |          |          |         |          |          |          |          |          |          |          | 0.8     | -     | -     | <0.2    |
| Chromium (III+VI) (dissolved) | μg/L            | 1                     | 0.01                             | < 0.2    | <0.2    | 0.2      | <0.2                                             | 0.2      | 0.2     | <0.2     | <0.2     | 0.3      | 0.2      | <0.2    | <0.2     | <0.2     | 0.2      | <0.2     | <0.2     | 0.5      | 0.5      | 5.9     | -     | -     | 0.4     |
| Chromium (III+VI) (total)     | μg/L            | 1                     | No Water Quality Objective Value |          |         |          |                                                  |          |         |          |          |          |          |         |          |          |          |          |          |          |          | 6.7     | -     | -     | 0.7     |
| Copper (dissolved)            | μg/L            | 1                     | 1                                | < 0.5    | <0.5    | <0.5     | <0.5                                             | <0.5     | <0.5    | <0.5     | <0.5     | <0.5     | <0.5     | <0.5    | <0.5     | <0.5     | <0.5     | <0.5     | <0.5     | 0.7      | 0.7      | 4.3     | -     | -     | 0.6     |
| Copper (total)                | μg/L            | 1                     | No Water Quality Objective Value |          |         |          |                                                  |          |         |          |          |          |          |         |          |          |          |          |          |          |          | 0.7     | -     | -     | 1.1     |
| Iron (dissolved)              | μg/L            | 50                    | 300                              | 57       | 18      | 56       | 61                                               | 66       | 57      | 56       | 57       | 60       | 27       | 30      | 54       | 42       | 122      | 92       | 95       | 471      | 605      | 2       | -     | -     | 9       |
| Iron (total)                  | μg/L            | 50                    | No Water Quality Objective Value |          |         |          |                                                  |          |         |          |          |          |          |         |          |          |          |          |          |          |          | 38      | -     | -     | 133     |
| Lead (dissolved)              | μg/L            | 1                     | 1                                | < 0.1    | <0.1    | <0.1     | <0.1                                             | <0.1     | <0.1    | <0.1     | <0.1     | 0.1      | <0.1     | <0.1    | <0.1     | <0.1     | <0.1     | <0.1     | <0.1     | 0.1      | 0.3      | <0.1    | -     | -     | <0.1    |
| Lead (total)                  | μg/L            | 1                     | No Water Quality Objective Value |          |         |          |                                                  |          |         |          |          |          |          |         |          |          |          |          |          |          |          | <0.1    | -     | -     | 0.3     |
| Manganese (dissolved)         | μg/L            | 5                     | 1,200                            | 2.4      | 1.9     | 2.4      | 3.0                                              | 2.0      | 2.0     | 2.2      | 2.4      | 9.6      | 4.2      | 2.5     | 3.2      | 2.2      | 35.8     | 4.6      | 4.8      | 20.8     | 21.0     | 2       | -     | -     | 0.9     |
| Manganese (total)             | μg/L            | 5                     | No Water Quality Objective Value | <b>—</b> |         | <b>-</b> | <del>                                     </del> |          |         | <u> </u> | <u> </u> |          |          |         | <u> </u> | <u> </u> |          |          |          |          |          | 4.5     | -     |       | 2.4     |
| Nickel (dissolved)            | μg/L            | 1                     | 8                                | 1.1      | 1.0     | 0.9      | 1.2                                              | 1.2      | 1.2     | 1.1      | 1.2      | 1.3      | <0.5     | <0.5    | <0.5     | <0.5     | <0.5     | <0.5     | <0.5     | 0.8      | 0.8      | <0.5    | -     |       | 0.6     |
| Nickel (total)                | μg/L            | 1                     | No Water Quality Objective Value | <b>—</b> |         | <b>-</b> | <b></b>                                          |          |         |          |          | -        |          |         |          | <u> </u> |          |          |          |          |          | 0.5     | -     | -     | <0.5    |
| Silver (dissolved)            | μg/L            | 5                     | 0.02                             | <0.01    | <0.01   | <0.01    | <0.01                                            | <0.01    | <0.01   | <0.01    | <0.01    | <0.01    | 0.04     | 0.04    | <0.01    | <0.01    | <0.01    | <0.01    | <0.01    | <0.01    | <0.01    | <0.01   | -     | -     | <0.01   |
| Silver (total)                | μg/L            | 5                     | No Water Quality Objective Value | <b>—</b> |         | <u> </u> | <u> </u>                                         | <u> </u> |         | <u> </u> | <u> </u> | <u> </u> | <u> </u> |         |          | <u> </u> |          | <u> </u> | <u> </u> | L        | <u> </u> | <0.01   | -     | -     | <0.01   |
| Zinc (dissolved)              | μg/L            | 5                     | 2.4                              | <1       | <1      | <1       | <1                                               | <1       | <1      | <1       | <1       | <1       | 2        | 2       | <1       | <1       | 1        | 1        | 1        | 21       | 2        | 3       | -     | -     | 6       |
| Zinc (total)                  | μg/L            | 5                     | No Water Quality Objective Value |          |         |          |                                                  |          |         |          |          |          |          | l       |          | I        |          |          |          |          |          | <1      |       |       | 3       |

Water Quality Objective values for surface water refer to the default trigger values for physical and chemical stressors in south-east Australia (upland rivers) for the
protection of 99% of aquatic species ANZECC / ARMCANZ (2000), they are not pollutant limits imposed by EPL 21266.





#### Snowy Hydro 2.0 Main Works Monthly EPL Sampling: 01 - 31 October 2023 - Treated Water

| Analyte                                  | Unit         | Limit of Reporting | Water Quality Objective Value*   |
|------------------------------------------|--------------|--------------------|----------------------------------|
| Flow Rate                                |              |                    |                                  |
| Inflow                                   | ML/day       | -                  | -                                |
| Outflow <sup>®</sup>                     | ML/day       | -                  | 4.32 (EPL 43 / 50)               |
| Field                                    |              |                    |                                  |
| pH                                       | pH Unit      | -                  | 6.5-8.5                          |
| Electrical Conductivity                  | uS/cm        | -                  | 700 (EPL 41) / 200 (EPL 50)      |
| Oxidation Reduction Potential            | mV           | -                  | No Water Quality Objective Value |
| Temperature                              | *c           | -                  | 15                               |
| Dissolved Oxygen                         | % saturation | -                  | No Water Quality Objective Value |
| Turbidity                                | NTU          | -                  | <25                              |
| Laboratory analytes                      |              |                    |                                  |
| Total suspended solids                   | mg/L         | 5                  | 5/10                             |
| Hardness as CaCO <sub>3</sub> (filtered) | mg/L         | 1                  | No Water Quality Objective Value |
| Nutrients                                |              |                    |                                  |
| Ammonia as N                             | μg/L         | 5                  | 200/2000^                        |
| Kjeldahl Nitrogen Total                  | μg/L         | 10                 | No Water Quality Objective Value |
| Nitrogen (Total)                         | μg/L         | 10                 | 350/-^                           |
| Reactive Phosphorus                      | μg/L         | 1                  | No Water Quality Objective Value |
| Phosphorus (Total)                       | μg/L         | 5                  | 100/300^                         |
| Inorganics                               | Ī            |                    |                                  |
| Cyanide Total                            | μg/L         | 4                  | No Water Quality Objective Value |
| Hydrocarbons                             |              |                    |                                  |
| Oil and Grease                           | mg/L         | 5                  | 2/5^                             |
| Metals                                   |              |                    |                                  |
| Aluminium (dissolved)                    | μg/L         | 5                  | 55                               |
| Arsenic (dissolved)                      | μg/L         | 0.2                | 13                               |
| Chromium (III+VI) (dissolved)            | μg/L         | 0.2                | 1                                |
| Copper (dissolved)                       | μg/L         | 0.5                | 14                               |
| Iron (dissolved)                         | μg/L         | 2                  | 300                              |
| Lead (dissolved)                         | μg/L         | 0.1                | 3.4                              |
| Manganese (dissolved)                    | μg/L         | 0.5                | 1,900                            |
| Nickel (dissolved)                       | μg/L         | 0.5                | 11                               |
| Silver (dissolved)                       | μg/L         | 0.01               | 0.05                             |
| Zinc (dissolved)                         | μg/L         | 1                  | 8                                |
| Biological                               |              |                    |                                  |
| Faecal Coliforms                         | CFU/100mL    | 1                  | 10/100^                          |
| Biological Oxygen Demand                 | mg/L         | <5                 | 5                                |

|            |        | T      | T      |        | <u> </u> |        |           |
|------------|--------|--------|--------|--------|----------|--------|-----------|
| EPL 41     | EPL 43 | EPL 44 | EPL 45 | EPL 47 | EPL 48   | EPL 49 | EPL 50    |
|            |        |        |        | •      | •        |        |           |
| 17/09/2023 |        |        |        |        |          |        | 17/09/202 |
| -          | 0.0111 | 0.4351 | 0.0330 | 0.1522 | 0.0565   | 0.1014 | -         |
| -          | -      | -      | -      | -      | -        | -      | -         |
|            |        |        |        |        |          |        |           |
| 8.06       | -      | -      | -      | -      | -        | -      | 7.06      |
| 189        | -      | -      | -      | -      | -        | -      | 19        |
| 587        | -      | -      | -      | -      | -        | -      | 174       |
| 10.54      | -      | -      | -      | -      | -        | -      | 12.34     |
| 154.9      | -      | -      | -      | -      | -        | -      | 55.7      |
| 0          | -      | -      | -      | -      | -        | -      | 8.8       |
|            |        |        |        |        |          |        |           |
| <5         | -      | -      | -      | -      | -        | -      | <5        |
| 24         | -      | -      | -      | -      | -        | -      | <1        |
|            |        |        |        |        |          |        |           |
| <10        | -      | -      | -      | -      | -        | -      | <10       |
| 100        | -      | -      | -      | -      | -        | -      | 200       |
| 200        | -      | -      | -      | -      | -        | -      | 300       |
| <10        | -      | -      | -      | -      | -        | -      | <10       |
| 20         | -      | -      | -      | -      | -        | -      | 10        |
|            |        |        |        |        |          |        |           |
| <4         | -      | -      | -      | -      | -        | -      | <4        |
|            |        |        |        |        |          |        |           |
| <1         | -      | -      | -      | -      | -        | -      | <1        |
|            |        |        |        |        |          |        |           |
| 64         | -      |        | -      | -      | -        | -      | <5        |
| 0.2        | -      | -      | -      | -      | -        | -      | <0.2      |
| <0.2       | -      | -      | -      | -      | -        | -      | <0.2      |
| 6.6        |        | -      | -      | -      | -        | -      | <0.5      |
| 8          | -      | -      | -      | -      | -        | -      | <2        |
| 0.2        | -      | -      | -      | -      | -        | -      | <0.1      |
| 0.6        | -      | -      | -      | -      | -        | -      | <0.5      |
| 2.6        | -      | -      | -      | -      | -        | -      | <0.5      |
| <0.01      | -      | -      | -      | -      | -        | -      | < 0.01    |
| 141        | -      | -      | -      | -      | -        | -      | <1        |
|            |        |        |        |        |          |        |           |
| <1         | -      | -      | -      | -      | -        | -      | <1        |
| 2          | -      | -      | -      | -      | -        | -      | <2        |

Note: Treated water was not being discharged at Talbingo ot Tantangara Reservoirs at the time of EPL sampling.

There is no 100th percentile limit for Nitrogen (Total).

Water Quality Objective values Treated Water reference the predicted values for physical and chemical stressors from the treatment plant as presented in the Main Works EIS.

Samples not required

<sup>^ 90</sup> Percentile concentration limit/100 Percentile limit

Inflows to STP and CWTP do not directly correspond to outflow at RO as much of the water is reused on site





#### <u>Snowy Hydro 2.0 Main Works</u> Monthly EPL Sampling: 01 - 31 October 2023 - Treated Water

| Date       |
|------------|
| 1/10/2023  |
| 2/10/2023  |
| 3/10/2023  |
| 4/10/2023  |
| 5/10/2023  |
| 6/10/2023  |
| 7/10/2023  |
| 8/10/2023  |
| 9/10/2023  |
| 10/10/2023 |
| 11/10/2023 |
| 12/10/2023 |
| 13/10/2023 |
| 14/10/2023 |
| 15/10/2023 |
| 16/10/2023 |
| 17/10/2023 |
| 18/10/2023 |
| 19/10/2023 |
| 20/10/2023 |
| 21/10/2023 |
| 22/10/2023 |
| 23/10/2023 |
| 24/10/2023 |
| 25/10/2023 |
| 26/10/2023 |
| 27/10/2023 |
| 28/10/2023 |
| 29/10/2023 |
| 30/10/2023 |
| 31/10/2023 |

| EPL 43 *  | EPL 50 ^ |
|-----------|----------|
| Discharge | e volume |
| (Mega     | litres)  |
|           |          |
|           |          |
| ٠         |          |
|           | 0.14     |
|           | 0.64     |
|           | 0.75     |
|           | 0.86     |
|           | 0.71     |
| ٠         | 0.66     |
|           |          |
|           |          |
|           |          |
|           |          |
|           |          |
|           |          |
|           | -        |
|           |          |
| ٠         | ٠        |
| -         | -        |
| ٠         | ٠        |
|           |          |
|           | ٠        |
|           | -        |
|           |          |
|           | -        |
|           |          |
|           |          |
|           | 0.58     |
|           |          |
| -         |          |
| -         | -        |

| EPL 44 | EPL 45                        | EPL 47 | EPL 48 | EPL 49 |  |  |  |  |  |  |  |
|--------|-------------------------------|--------|--------|--------|--|--|--|--|--|--|--|
|        | Discharge volume (Megalitres) |        |        |        |  |  |  |  |  |  |  |
|        |                               | 0.20   | 0.06   | 0.19   |  |  |  |  |  |  |  |
|        |                               | 0.20   | 0.06   |        |  |  |  |  |  |  |  |
|        |                               | 0.21   | 0.06   | 0.00   |  |  |  |  |  |  |  |
|        |                               | 0.16   | 0.07   | 0.00   |  |  |  |  |  |  |  |
|        |                               | 0.18   | 0.07   | 0.19   |  |  |  |  |  |  |  |
|        | 0.40                          | 0.22   | 0.08   | 0.21   |  |  |  |  |  |  |  |
|        | 0.04                          | 0.15   | 0.09   | 0.19   |  |  |  |  |  |  |  |
|        | 0.05                          | 0.12   | 0.08   | 0.11   |  |  |  |  |  |  |  |
|        | 0.05                          | 0.20   | 0.08   | 0.45   |  |  |  |  |  |  |  |
|        | 0.05                          | 0.18   | 0.06   | 0.33   |  |  |  |  |  |  |  |
|        | 0.05                          | 0.13   | 0.07   | 0.40   |  |  |  |  |  |  |  |
|        | 0.04                          | 0.15   | 0.07   | 0.38   |  |  |  |  |  |  |  |
|        | 0.07                          | 0.14   | 0.04   | 0.19   |  |  |  |  |  |  |  |
|        | 0.04                          | 0.12   | 0.10   | 0.05   |  |  |  |  |  |  |  |
|        | 0.05                          | 0.21   | 0.07   | 0.02   |  |  |  |  |  |  |  |
|        | 0.04                          | 0.15   | 0.07   | 0.18   |  |  |  |  |  |  |  |
|        | 0.04                          | 0.18   | 0.07   | 0.37   |  |  |  |  |  |  |  |
|        | 0.04                          | 0.16   | 0.07   | 0.42   |  |  |  |  |  |  |  |
|        | 0.05                          | 0.14   | 0.06   | 0.08   |  |  |  |  |  |  |  |
|        | 0.06                          | 0.15   | 0.07   |        |  |  |  |  |  |  |  |
|        | 0.05                          | 0.17   | 0.07   |        |  |  |  |  |  |  |  |
|        | 0.05                          | 0.16   | 0.05   |        |  |  |  |  |  |  |  |
|        | 0.04                          | 0.15   | 0.06   |        |  |  |  |  |  |  |  |
|        | 0.05                          | 0.18   | 0.06   |        |  |  |  |  |  |  |  |
|        | 0.04                          | 0.19   | 0.06   |        |  |  |  |  |  |  |  |
|        | 0.04                          | 0.15   | 0.04   |        |  |  |  |  |  |  |  |
|        | 0.06                          | 0.10   | 0.07   |        |  |  |  |  |  |  |  |
|        | 0.04                          | 0.18   | 0.06   |        |  |  |  |  |  |  |  |
|        | 0.05                          | 0.17   | 0.05   |        |  |  |  |  |  |  |  |
|        | 0.05                          | 0.17   | 0.06   |        |  |  |  |  |  |  |  |
|        | 0.05                          | 0.15   | 0.07   |        |  |  |  |  |  |  |  |

Water not discharged on this day

Note: The EPL discharge volume limit for EPL 43 and 50 is 4.32 megalitres per day. Compliance with this criteria was met during the reporting month.

EPL 44 volume inflows were not recorded in October 2023 due to the technology upgrades.

- \* The maximum flow rate capacity for Lobs Hole STP/PWTP during the reporting month was 0 L/s.
- The maximum flow rate capacity for Tantangara STP/PWTP during the reporting month was 10 L/s.
- Water not discharged on this day
- Flow meter non-operational. Water volumes are considered to be similar daily flows to those recorded for each respective plant as works progressed at the same rate.





## **EPL MONTHLY MONITORING NOVEMBER 2023**

snowy 2.0

#### Snowy Hydro 2.0 Main Works Monthly EPL Sampling: 01-30 November 2023 Groundwater

| Analyte                       | Unit         | Limit of Reporting | Water Quality Objective Value*   |
|-------------------------------|--------------|--------------------|----------------------------------|
| Physiochemical                |              |                    |                                  |
| pH                            | pH Unit      | -                  | 6.5-8                            |
| Electrical Conductivity       | μS/cm        | -                  | 30-350                           |
| Oxidation Reduction Potential | mV           | -                  | No Water Quality Objective Value |
| Temperature                   | °C           | -                  | No Water Quality Objective Value |
| Dissolved Oxygen              | % saturation | -                  | No Water Quality Objective Value |
| Turbidity                     | NTU          | -                  | No Water Quality Objective Value |
| aboratory analytes            |              |                    |                                  |
| TSS                           | mg/L         | 5                  | No Water Quality Objective Value |
| Hardness as CaCO3             | mg/L         | 1                  | No Water Quality Objective Value |
| lutrients                     |              | Ī                  |                                  |
| Ammonia as N                  | μg/L         | 5                  | 13                               |
| Nitrite + Nitrate as N (Nox)  | μg/L         | 10                 | 15                               |
| Kjeldahl Nitrogen Total       | μg/L         | 10                 | No Water Quality Objective Value |
| Nitrogen (Total)              | μg/L         | 10                 | 250                              |
| Reactive Phosphorus           | μg/L         | 1                  | 15                               |
| Phosphorus (Total)            | μg/L         | 5                  | 20                               |
| norganics                     |              | i i                |                                  |
| Cyanide Total                 | μg/L         | 4                  | 4                                |
| lydrocarbons                  |              |                    |                                  |
| Oil and Grease                | mg/L         | 5                  | 5                                |
| Metals                        |              |                    |                                  |
| Aluminium (dissolved)         | μg/L         | 5                  | 27                               |
| Aluminium (total)             | μg/L         | 5                  | No Water Quality Objective Value |
| Arsenic (dissolved)           | μg/L         | 1                  | 0.8                              |
| Arsenic (total)               | μg/L         | 1                  | No Water Quality Objective Value |
| Chromium (III+VI) (dissolved) | μg/L         | 1                  | 0.01                             |
| Chromium (III+VI) (total)     | μg/L         | 1                  | No Water Quality Objective Value |
| Copper (dissolved)            | μg/L         | 1                  | 1                                |
| Copper (total)                | μg/L         | 1                  | No Water Quality Objective Value |
| Iron (dissolved)              | μg/L         | 50                 | 300                              |
| Iron (total)                  | μg/L         | 50                 | No Water Quality Objective Value |
| Lead (dissolved)              | μg/L         | 1                  | 1                                |
| Lead (total)                  | μg/L         | 1                  | No Water Quality Objective Value |
| Manganese (dissolved)         | μg/L         | 5                  | 1,200                            |
| Manganese (total)             | μg/L         | 5                  | No Water Quality Objective Value |
| Nickel (dissolved)            | μg/L         | 1                  | 8                                |
| Nickel (total)                | μg/L         | 1                  | No Water Quality Objective Value |
| Silver (dissolved)            | μg/L         | 5                  | 0.02                             |
| Silver (total)                | μg/L         | 5                  | No Water Quality Objective Value |
| Zinc (dissolved)              | μg/L         | 5                  | 2.4                              |
| Zinc (total)                  | μg/L         | 5                  | No Water Quality Objective Value |

|           |           |           |           |            |            |            |            |            |            |            |            | ,          |            |            |            |
|-----------|-----------|-----------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| EPL1      | EPL2      | EPL4      | EPL25     | EPL56      | EPL57      | EPL58      | EPL68      | EPL69      | EPL70      | EPL72      | EPL73      | EPL80      | EPL81      | EPL82      | EPL83      |
| 3/11/2023 | 3/11/2023 | 3/11/2023 | 3/11/2023 | 21/11/2023 | 21/11/2023 | 21/11/2023 | 19/11/2023 | 19/11/2023 | 19/11/2023 | 13/11/2023 | 13/11/2023 | 21/11/2023 | 21/11/2023 | 18/11/2023 | 21/11/2023 |
| 8         | 6.59      | 8.07      | 7.46      | 7.63       | 7.96       | 5.98       | 5.69       | 5.96       | 6.25       | 8.3        | 7.82       | 6.6        | 6.72       | 5.78       | 6.07       |
| 1220      | 520       | 1250      | 471       | 256        | 314        | 270        | 24.5       | 42.6       | 77.3       | 43         | 62         | 935        | 531        | 724        | 535        |
| -93       | 9         | -195      | 100       | 99         | 39         | 188        | -35.2      | -17        | -19.8      | 180        | 228        | 28         | -32        | 171        | 124        |
| 19.96     | 19.27     | 19.94     | 18.63     | 16.92      | 17.13      | 18.74      | 14.3       | 14.2       | 14.2       | 20.54      | 15.54      | 21.33      | 20.4       | 19.73      | 20.69      |
| 158.3     | 156.8     | 179.9     | 59.3      | 42.1       | 43.7       | 3.6        | 87.5       | 72.7       | 72.6       | 79.6       | 104.8      | 60.9       | 88.2       | 87.1       | 63.4       |
| 217       | 435       | 0         | 405       | 485        | 292        | 301        | 17.5       | 14.3       | 54.4       | 57.7       | 51.6       | 146        | 773        | 0          | 114        |
|           | T T       |           |           |            | Ī          |            | i e        | Ì          | 1          | i          | Ì          | i e        |            |            | Ì          |
| 56        | 130       | 1,310     | 126       | 323        | 209        | 149        | 152        | 63         | 138        | 24         | 17         | 6          | 568        | 2,230      | 21         |
| 132       | 223       | 184       | 160       | 113        | 116        | 68         | <1         | 2          | 25         | 51         | 46         | 345        | 256        | 246        | 107        |
|           | i         | i e       | İ         | i e        |            | i e        | İ          |            | İ          | i          |            | İ          | İ          | İ          | Ì          |
| 160       | 30        | 440       | 30        | 30         | 30         | <10        | 20         | 100        | 60         | 10         | 30         | 40         | 90         | 50         | 40         |
| 40        | 20        | <10       | <10       | 20         | 20         | 12100      | 930        | 140        | 480        | 40         | 60         | 20         | 60         | 50         | 3010       |
| 400       | <100      | 1700      | 600       | 300        | 400        | 4400       | 200        | 200        | 400        | <100       | 200        | 300        | 800        | 1100       | 1000       |
| 400       | <100      | 1700      | 600       | 300        | 400        | 16500      | 1100       | 300        | 900        | <100       | 300        | 300        | 900        | 1200       | 4000       |
| 10        | <10       | <10       | <10       | <10        | <10        | <10        | 1100       | 400        | 900        | -          | -          | <10        | 40         | <10        | <10        |
| 70        | 240       | 680       | 80        | 140        | 130        | 80         | 70         | 30         | 330        | 40         | 50         | 60         | 220        | 1440       | 80         |
|           | ĺ         | Î         | Ī         | ĺ          | ĺ          | ĺ          | Ì          | ĺ          | i i        | İ          | Ì          | i          | Ī          | ĺ          | ĺ          |
| -         | -         | -         | -         | <4         | <4         | <4         | <4         | <4         | <4         | <4         | <4         | <4         | <4         | <4         | <4         |
|           | İ         | Ì         | l .       | Ì          | ĺ          | Ì          | Ì          | ĺ          | i e        | İ          | Ì          | i –        | i e        | ĺ          | ĺ          |
| -         | -         | -         | -         | <1         | <1         | <1         | <1         | <1         | <1         | <1         | <1         | <1         | <1         | <5         | <1         |
|           | i         |           | İ         |            |            | i e        | İ          |            | İ          | i          |            | İ          |            |            | 1          |
| <5        | <5        | <5        | <5        | <5         | <5         | <5         | <5         | <5         | <5         | <5         | <5         | <5         | <5         | <5         | 17         |
| -         | -         | -         | -         | 6510       | 1850       | 1830       | 2570       | 1460       | 5200       | 572        | 601        | 23         | 5110       | 16400      | 492        |
| 1.4       | 0.7       | 11        | 0.3       | 0.2        | 3.2        | 0.3        | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       | 9.1        | 9.5        | <0.2       | 11         |
| -         | -         | -         | -         | 2.5        | 4.1        | 2.6        | 0.4        | 0.4        | 0.6        | <0.2       | 0.3        | 27.4       | 84.7       | 53.2       | 15.9       |
| 0.2       | <0.2      | <0.2      | <0.2      | <0.2       | <0.2       | 0.3        | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       | 0.2        | <0.2       | <0.2       | <0.2       |
| -         | -         | -         | -         | 18.3       | 4.5        | 5          | 1.3        | 1.5        | 4          | 4          | 0.9        | 0.5        | 8.9        | 37.7       | 1.6        |
| 1.8       | 0.8       | <0.5      | 23.2      | 3.2        | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       | 0.9        | <0.5       | <0.5       | 1          | 10.8       |
| -         | -         | -         | -         | 90.2       | 5.7        | 3.7        | 2.2        | 1.8        | 4.6        | 6.8        | 3.4        | <0.5       | 13.1       | 71.2       | 36.7       |
| <0.2      | 3         | 80        | <0.2      | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       | 2          | <0.2       | <0.2       | 4          |
| -         | -         | -         | -         | 9390       | 2290       | 2760       | 1720       | 998        | 3760       | 398        | 546        | 514        | 11300      | 22700      | 722        |
| <0.1      | <0.1      | <0.1      | <0.1      | <0.1       | <0.1       | 0.7        | <0.1       | <0.1       | <0.1       | 0.3        | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| -         | -         | -         | -         | 38.7       | 6.6        | 18.9       | 1.5        | 1          | 2.6        | 0.6        | 5.4        | <0.1       | 12.7       | 8.2        | 0.5        |
| 92.2      | 209       | 394       | 770       | 32.2       | 126        | 66.4       | 8.8        | 1.6        | 12.2       | 201        | 115        | 155        | 179        | 376        | 46.8       |
| -         | -         | -         | -         | 336        | 213        | 112        | 124        | 40.3       | 104        | 192        | 122        | 160        | 218        | 700        | 60.9       |
| 6.3       | 1.1       | 1.8       | 24.4      | <0.5       | 0.6        | 3.3        | <0.5       | <0.5       | 1.6        | 3.1        | 1.3        | 22.7       | 6          | 14.2       | 17         |
| -         | -         | -         | -         | 24.6       | 7.2        | 8.2        | 1.8        | 1          | 4          | 5.6        | 1.9        | 29.1       | 30.4       | 59.7       | 21.9       |
| <0.01     | <0.01     | <0.01     | <0.01     | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |
| -         | -         | -         | -         | 0.08       | <0.01      | 0.02       | 0.09       | 0.01       | <0.01      | <0.01      | <0.01      | <0.01      | 0.06       | 0.04       | <0.01      |
| 1         | 2         | <1        | 74        | 5          | <1         | 10         | 4          | 2          | 4          | 11         | 22         | 1          | 3          | 3          | 16         |
| -         |           | -         |           | 104        | 13         | 22         | 11         | 5          | 13         | 13         | 26         | 4          | 49         | 76         | 30         |

Water Quality Objective values for groundwater refer to the default trigger values for physical and chemical stressors in south-east Australia (upland rivers) for the protection of 99% of aquatic species ANZECC / ARMCANZ (2000), they are not pollutant limits imposed by EPL 21266.





# Snowy Hydro 2.0 Main Works Monthly EPL Sampling: 01 - 30 November 2023 - Talbingo and Tantangara Reservoir

| Analyte                                  | Unit         | Limit of<br>Reporting | Water Quality Objective Value*   |
|------------------------------------------|--------------|-----------------------|----------------------------------|
| Field                                    |              |                       |                                  |
| pH                                       | pH Unit      | -                     | 6.5-8                            |
| Electrical Conductivity                  | μS/cm        | -                     | 20-30                            |
| Oxidation Reduction Potential            | mV           | -                     | No Water Quality Objective Value |
| Temperature                              | °C           | -                     | No Water Quality Objective Value |
| Dissolved Oxygen                         | % saturation | -                     | 90-110                           |
| Turbidity                                | NTU          | -                     | 1-20                             |
| Laboratory analytes                      |              |                       |                                  |
| Total suspended solids                   | mg/L         | 5                     | No Water Quality Objective Value |
| Hardness as CaCO <sub>3</sub> (filtered) | mg/L         | 1                     | No Water Quality Objective Value |
| Nutrients                                |              |                       |                                  |
| Ammonia as N                             | μg/L         | 5                     | 10                               |
| Nitrite + Nitrate as N (NOx)             | μg/L         | 10                    | 10                               |
| Kjeldahl Nitrogen Total                  | μg/L         | 10                    | No Water Quality Objective Value |
| Nitrogen (Total)                         | μg/L         | 10                    | 350                              |
| Reactive Phosphorus                      | μg/L         | 1                     | 5                                |
| Phosphorus (Total)                       | μg/L         | 5                     | 10                               |
| Inorganics                               |              |                       |                                  |
| Cyanide Total                            | μg/L         | 4                     | 7                                |
| Hydrocarbons                             |              |                       |                                  |
| Oil and Grease                           | mg/L         | 5                     | 5                                |
| Metals                                   |              |                       |                                  |
| Aluminium (dissolved)                    | μg/L         | 5                     | 55                               |
| Arsenic (dissolved)                      | μg/L         | 0.2                   | 13                               |
| Chromium (III+VI) (dissolved)            | μg/L         | 0.2                   | 1                                |
| Copper (dissolved)                       | μg/L         | 0.5                   | 14                               |
| Iron (dissolved)                         | μg/L         | 2                     | 300                              |
| Lead (dissolved)                         | μg/L         | 0.1                   | 3.4                              |
| Manganese (dissolved)                    | μg/L         | 0.5                   | 1,900                            |
| Nickel (dissolved)                       | μg/L         | 0.5                   | 11                               |
| Silver (dissolved)                       | μg/L         | 0.01                  | 0.05                             |
| Zinc (dissolved)                         | μg/L         | 1                     | 8                                |
| Biological                               |              |                       |                                  |
| Faecal Coliforms                         | CFU/100mL    | 1                     | 10/100^                          |
| Biochemical Oxygen Demand                | mg/L         | 2                     | 1/5^                             |

| EPL10    | EPL11    | EPL28    | EPL29    | EPL32    | EPL38    | EPL39 | EPL40 | EPL46    | EPL51    |
|----------|----------|----------|----------|----------|----------|-------|-------|----------|----------|
| 26/11/23 | 26/11/23 | 21/11/23 | 21/11/23 | 21/11/23 | 21/11/23 | -     | -     | 22/11/23 | 21/11/23 |
| 7.45     | 7.05     | 7.11     | 7.8      | 7.07     | 7.32     | Dry   | Dry   | 7.36     | 7.52     |
| 75       | 62       | 31       | 44.9     | 55.4     | 34.3     | Dry   | Dry   | 35.1     | 26.5     |
| 194      | 211      | -22.7    | -99.8    | -21.5    | -24.5    | Dry   | Dry   | -39      | -36.6    |
| 19.03    | 19.4     | 22.3     | 19.1     | 22.8     | 20.8     | Dry   | Dry   | 16.2     | 19.6     |
| 99       | 82.8     | 80       | 78.9     | 75.2     | 77.7     | Dry   | Dry   | 66.7     | 78       |
| 123      | 96.9     | 62.1     | 7.12     | 3.84     | 6.63     | Dry   | Dry   | 3.43     | 2.54     |
|          |          |          |          |          |          |       |       |          |          |
| <5       | <5       | 192      | <5       | 8        | 6        | Dry   | Dry   | <5       | <5       |
| 38       | 33       | <1       | 2        | 2        | <1       | Dry   | Dry   | <1       | 2        |
|          |          |          |          |          |          |       |       |          |          |
| <10      | <10      | 30       | <10      | 30       | 20       | Dry   | Dry   | 10       | <10      |
| 10       | <10      | <10      | <10      | <10      | 20       | Dry   | Dry   | <10      | <10      |
| 200      | 200      | 2600     | 200      | 200      | 200      | Dry   | Dry   | 200      | 200      |
| 200      | 200      | 2600     | 200      | 200      | 200      | Dry   | Dry   | 200      | 200      |
| <10      | <10      | 0        | 0        | 0        | 0        | Dry   | Dry   | 0        | 0        |
| 30       | 10       | 360      | <10      | <10      | 10       | Dry   | Dry   | 10       | <10      |
|          |          |          |          |          |          |       |       |          |          |
| <4       | <4       | <4       | <4       | <4       | <4       | Dry   | Dry   | <4       | <4       |
|          |          |          |          |          |          |       |       |          |          |
| <1       | <1       | <1       | <1       | <1       | <1       | Dry   | Dry   | <1       | <1       |
|          |          |          |          |          |          |       |       |          |          |
| 7        | 7        | 18       | 35       | 27       | 34       | Dry   | Dry   | 31       | 33       |
| 0.3      | 0.3      | 0.2      | <0.2     | <0.2     | <0.2     | Dry   | Dry   | <0.2     | <0.2     |
| < 0.2    | <0.2     | <0.2     | <0.2     | <0.2     | <0.2     | Dry   | Dry   | <0.2     | <0.2     |
| <0.5     | <0.5     | <0.5     | <0.5     | <0.5     | <0.5     | Dry   | Dry   | <0.5     | <0.5     |
| 36       | 52       | 224      | 133      | 213      | 183      | Dry   | Dry   | 128      | 129      |
| <0.1     | <0.1     | <0.1     | <0.1     | <0.1     | <0.1     | Dry   | Dry   | <0.1     | <0.1     |
| 8.7      | 13       | 228      | 24.4     | 131      | 59       | Dry   | Dry   | 31.7     | 22.9     |
| <0.5     | <0.5     | <0.5     | <0.5     | <0.5     | <0.5     | Dry   | Dry   | <0.5     | <0.5     |
| < 0.01   | < 0.01   | <0.01    | <0.01    | <0.01    | <0.01    | Dry   | Dry   | <0.01    | <0.01    |
| <1       | <1       | <1       | <1       | <1       | <1       | Dry   | Dry   | <1       | <1       |
|          |          |          |          |          |          |       |       |          |          |
| 8200**   | 6500**   | 180**    | -        | -        | -        | Dry   | Dry   | -        | 33**     |
| 4        | <2       | <2       | <2       | <2       | <2       | Dry   | Dry   | <2       | <2       |

<sup>\*</sup> Water Quality Objective values for Talbingo and Tantangara Reservoir refer to the default trigger values for physical and chemical stressors in south-east Australia (fresh lakes and reservoirs) for the protection of 95% of aquatic species ANZECC / ARMCANZ (2000), they are not pollutant limits imposed by EPI 21366

<sup>\*\*</sup> Algal blooms can present as feacal coliforms - green tinge noted in Talbingo Resevroir water at time of sampling.

<sup>^ 90</sup>th percentile concentration limits / 100 percentile concentration limits

<sup>-</sup> Sample not required at this location.





Snowy Hydro 2.0 Main Works
Monthly EPL Sampling: 01 - 30 November 2023 - Surface Water

| Analyte                       | Unit                | Limit of<br>Reporting                            | Water Quality Objective Value*   |
|-------------------------------|---------------------|--------------------------------------------------|----------------------------------|
| Field                         |                     |                                                  |                                  |
| рН                            | -                   |                                                  | 6.5-8                            |
| Electrical Conductivity       | μS/cm               | -                                                | 30-350                           |
| Oxidation Reduction Potential | mV                  | -                                                | No Water Quality Objective Value |
| Temperature                   | *c                  | $\vdash$                                         | No Water Quality Objective Value |
|                               |                     | <del></del>                                      |                                  |
| Dissolved Oxygen Turbidity    | % saturation<br>NTU |                                                  | 90-110<br>2-25                   |
|                               |                     | <del></del>                                      | 2-23                             |
| Laboratory analytes<br>TSS    | mg/L                | 5                                                | No Water Quality Objective Value |
| Hardness as CaCO3             | mg/L                | 1                                                | No Water Quality Objective Value |
| Nutrients                     | <del></del>         | <del>                                     </del> |                                  |
| Ammonia as N                  | μg/L                | 5                                                | 13                               |
| Nitrite + Nitrate as N (NOx)  | μg/L                | 10                                               | 15                               |
| Kjeldahl Nitrogen Total       | μg/L                | 10                                               | No Water Quality Objective Value |
| Nitrogen (Total)              | μg/L                | 10                                               | 250                              |
| Reactive Phosphorus           | μg/L                | 1                                                | 15                               |
| Phosphorus (Total)            | μg/L                | 5                                                | 20                               |
| Inorganics                    |                     |                                                  |                                  |
| Cyanide Total                 | μg/L                | 4                                                | 4                                |
| Hydrocarbons                  |                     |                                                  |                                  |
| Oil and Grease                | mg/L                | 5                                                | 5                                |
| Metals                        |                     |                                                  |                                  |
| Aluminium (dissolved)         | μg/L                | 5                                                | 27                               |
| Aluminium (total)             | μg/L                | 5                                                | No Water Quality Objective Value |
| Arsenic (dissolved)           | μg/L                | 1                                                | 0.8                              |
| Arsenic (total)               | μg/L                | 1                                                | No Water Quality Objective Value |
| Chromium (III+VI) (dissolved) | μg/L                | 1                                                | 0.01                             |
| Chromium (III+VI) (total)     | μg/L                | 1                                                | No Water Quality Objective Value |
| Copper (dissolved)            | μg/L                | 1                                                | 1                                |
| Copper (total)                | μg/L                | 1                                                | No Water Quality Objective Value |
| Iron (dissolved)              | μg/L                | 50                                               | 300                              |
| Iron (total)                  | μg/L                | 50                                               | No Water Quality Objective Value |
| Lead (dissolved)              | μg/L                | 1                                                | 1                                |
| Lead (total)                  | μg/L                | 1                                                | No Water Quality Objective Value |
| Manganese (dissolved)         | μg/L                | 5                                                | 1,200                            |
| Manganese (total)             | μg/L                | 5                                                | No Water Quality Objective Value |
| Nickel (dissolved)            | μg/L                | 1                                                | No Water Quality Objective Value |
| Nickel (total)                | μg/L                | 1                                                | No Water Quality Objective Value |
| Silver (dissolved)            | μg/L                | 5                                                | 0.02                             |
| Silver (total)                | μg/L                | 5                                                | No Water Quality Objective Value |
| Zinc (dissolved) Zinc (total) | μg/L                |                                                  | 2.4                              |
| Zinc (total)                  | ue/L                | 5                                                | No Water Quality Objective Value |

| EPL5                                                                                                                                                                                                                                                                                                                                                                                      | EPL6      | EPL8      | EPL9      | EPL12    | EPL14     | EPL15     | EPL16     | EPL17     | EPL24     | EPL26                                                                                                                                                                              | EPL27     | EPL30     | EPL31     | EPL33     | EPL34     | EPL35     | EPL36     | EPL37     | EPL52        | EPL53      | EPL54 | EPL55      | EPL71       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|----------|-----------|-----------|-----------|-----------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--------------|------------|-------|------------|-------------|
| 16/11/23                                                                                                                                                                                                                                                                                                                                                                                  | 16/11/23  | 16/11/23  | 16/11/23  | 16/11/23 | 16/11/23  | 16/11/23  | 16/11/23  | 16/11/23  | 16/11/23  | 17/11/23                                                                                                                                                                           | 17/11/23  | 15/11/23  | 15/11/23  | 15/11/23  | 15/11/23  | 15/11/23  | 15/11/23  | 15/11/23  | 25/11/23     | -          | -     | 25/11/23   | 17/11/23    |
| 7.42                                                                                                                                                                                                                                                                                                                                                                                      | 7.49      | 8.48      | 8.31      | 7.43     | 8.23      | 7.98      | 7.38      | 8.02      | 6.22      | 7.52                                                                                                                                                                               | 7.67      | 8.41      | 8.41      | 8.36      | 8.52      | 5.52      | 7.98      | 8.26      | 8.82         | Dry        | Dry   | 6.93       | 7.07        |
| 113                                                                                                                                                                                                                                                                                                                                                                                       | 109       | 120       | 113       | 110      | 108       | 109       | 112       | 529       | 218       | 43                                                                                                                                                                                 | 58        | 31        | 30        | 30        | 26        | 24        | 70        | 62        | 336          | Dry        | Dry   | 194        | 41          |
| 209                                                                                                                                                                                                                                                                                                                                                                                       | 216       | 152       | 188       | 217      | 162       | 198       | 196       | 196       | 233       | 190                                                                                                                                                                                | 188       | 199       | 216       | 223       | 217       | 211       | 229       | 218       | 143          | Dry        | Dry   | 179        | 213         |
| 20.16                                                                                                                                                                                                                                                                                                                                                                                     | 18.5      | 23.04     | 23.28     | 19.58    | 19.44     | 19.77     | 21.75     | 21        | 19.08     | 10.61                                                                                                                                                                              | 11.16     | 20.2      | 21.3      | 20.26     | 20.52     | 20.11     | 17.12     | 19.96     | 19.86        | Dry        | Dry   | 19.39      | 10.54       |
| 119.3                                                                                                                                                                                                                                                                                                                                                                                     | 106.8     | 108.2     | 105.7     | 181.1    | 111.3     | 173.7     | 99.9      | 174.6     | 94.7      | 136.8                                                                                                                                                                              | 82.6      | 166       | 164.8     | 128       | 92.9      | 163.5     | 111.5     | 119.1     | 94.1         | Dry        | Dry   | 83.2       | 77.7        |
| 92.1                                                                                                                                                                                                                                                                                                                                                                                      | 80.9      | 77.1      | 76.5      | 107      | 75.6      | 73.4      | 94.3      | 99.2      | 152       | 97.2                                                                                                                                                                               | 106       | 100       | 119       | 77.8      | 84.1      | 89.5      | 134       | 180       | 461          | Dry        | Dry   | 281        | 223         |
|                                                                                                                                                                                                                                                                                                                                                                                           |           |           |           |          |           |           |           |           |           |                                                                                                                                                                                    |           |           |           |           |           |           |           |           |              |            |       |            |             |
| <5                                                                                                                                                                                                                                                                                                                                                                                        | <5        | <5        | <5        | 6        | <5        | <5        | <5        | 34        | <5        | <s< td=""><td>&lt;5</td><td>&lt;5</td><td>10</td><td>&lt;5</td><td>&lt;5</td><td>&lt;5</td><td>&lt;5</td><td>11</td><td>70</td><td>Dry</td><td>Dry</td><td>12</td><td>12</td></s<> | <5        | <5        | 10        | <5        | <5        | <5        | <5        | 11        | 70           | Dry        | Dry   | 12         | 12          |
| 48                                                                                                                                                                                                                                                                                                                                                                                        | 48        | 46        | 48        | 48       | 48        | 48        | 43        | 259       | 56        | 16                                                                                                                                                                                 | 16        | 9         | <1        | 2         | 4         | 4         | 17        | 17        | 72           | Dry        | Dry   | 60         | 13          |
| 40                                                                                                                                                                                                                                                                                                                                                                                        | <10       | <10       | <10       | <10      | <10       | <10       | <10       | <10       | 20        | <10                                                                                                                                                                                | <10       | <10       | <10       | <10       | <10       | <10       | 20        | 20        | 30           | Dry        | Dry   | 10         | 40          |
| <10                                                                                                                                                                                                                                                                                                                                                                                       | <10       | <10       | <10       | 640      | <10       | <10       | 100       | 40        | 5640      | 10                                                                                                                                                                                 | <10       | <10       | <10       | <10       | <10       | <10       | 170       | 110       | 8720         | Dry        | Dry   | 3690       | <10         |
| 200                                                                                                                                                                                                                                                                                                                                                                                       | 100       | 200       | 200       | 200      | 100       | 300       | 200       | 100       | 700       | 200                                                                                                                                                                                | 100       | 200       | 200       | 200       | 200       | 200       | 400       | 400       | 3200         | Dry        | Dry   | 1500       | 200         |
| 200                                                                                                                                                                                                                                                                                                                                                                                       | 100       | 200       | 200       | 800      | 100       | 300       | 300       | 100       | 6300      | 200                                                                                                                                                                                | 100       | 200       | 200       | 200       | 200       | 200       | 600       | 500       | 11900        | Dry        | Dry   | 5200       | 200         |
| 30<br>10                                                                                                                                                                                                                                                                                                                                                                                  | <10<br>30 | <10<br>20 | <10<br>20 | 40<br>20 | <10<br>20 | <10<br>30 | <10<br>30 | <10<br>40 | <10<br>20 | <10<br>30                                                                                                                                                                          | <10<br>30 | <10<br>20 | <10<br>50 | <10<br>10 | <10<br>20 | <10<br>20 | <10<br>40 | <10<br>50 | <10<br>50    | Dry<br>Dry | Dry   | <10<br>100 | <10<br>30   |
| 10                                                                                                                                                                                                                                                                                                                                                                                        | 30        | 20        | 20        | 20       | 20        | 30        | 30        | 40        | 20        | 30                                                                                                                                                                                 | 30        | 20        | 30        | 10        | 20        | 20        | 40        | 30        | 30           | biy        | biy   | 100        | 30          |
| <4                                                                                                                                                                                                                                                                                                                                                                                        | <4        | <4        | <4        | <4       | <4        | <4        | <4        | <4        | <4        | <4                                                                                                                                                                                 | <4        | <4        | <4        | <4        | <4        | <4        | <4        | <4        | <4           | Dry        | Dry   | <4         | <4          |
|                                                                                                                                                                                                                                                                                                                                                                                           |           |           |           |          |           |           |           |           |           |                                                                                                                                                                                    |           |           |           |           |           |           |           |           |              |            |       |            |             |
| <1                                                                                                                                                                                                                                                                                                                                                                                        | <1        | <1        | <1        | <1       | <1        | <1        | <1        | <1        | <1        | <1                                                                                                                                                                                 | <1        | <1        | <1        | <1        | <1        | <1        | <1        | <1        | <1           | Dry        | Dry   | <1         | <1          |
| 9                                                                                                                                                                                                                                                                                                                                                                                         | <5        | 6         | 6         | 8        | 6         | 6         | 7         | <5        | <5        | 6                                                                                                                                                                                  | 6         | 17        | 16        | 38        | 25        | 26        | 38        | 35        | 26           | Dry        | Dry   | 11         | 9           |
| -                                                                                                                                                                                                                                                                                                                                                                                         | -         | -         | -         | -        | -         | -         | -         |           | -         | -                                                                                                                                                                                  | -         | -         | -         | -         | -         | -         | -         | -         | 2500         | Dry        | Dry   | 3050       | 5190        |
| 0.5                                                                                                                                                                                                                                                                                                                                                                                       | 0.3       | 0.5       | 0.4       | 0.4      | 0.4       | 0.4       | 0.5       | 0.3       | <0.2      | <0.2                                                                                                                                                                               | <0.2      | <0.2      | <0.2      | <0.2      | 0.3       | 0.3       | 0.3       | 0.4       | 1            | Dry        | Dry   | <0.2       | 0.6         |
|                                                                                                                                                                                                                                                                                                                                                                                           | -         | -         | -         | -        | -         | -         | -         | -         | -         | -                                                                                                                                                                                  | -         | -         | -         | -         | -         | -         | -         | -         | 1.6          | Dry        | Dry   | 1.1        | 5.4         |
| <0.2                                                                                                                                                                                                                                                                                                                                                                                      | <0.2      | <0.2      | <0.2      | <0.2     | <0.2      | <0.2      | <0.2      | <0.2      | <0.2      | 0.3                                                                                                                                                                                | 0.2       | <0.2      | <0.2      | <0.2      | <0.2      | <0.2      | <0.2      | <0.2      | 3.3          | Dry        | Dry   | 0.6        | <0.2        |
| <0.5                                                                                                                                                                                                                                                                                                                                                                                      | <0.5      | <0.5      | <0.5      | <0.5     | <0.5      | <0.5      | <0.5      | <0.5      | <0.5      | <0.5                                                                                                                                                                               | <0.5      | <0.5      | <0.5      | <0.5      | <0.5      | <0.5      | <0.5      | <0.5      | 10.5<br><0.5 | Dry        | Dry   | 6.3<br>0.8 | 6.3<br><0.5 |
| <u.5< td=""><td>- &lt;0.5</td><td>- &lt;0.5</td><td>&lt;0.5</td><td>&lt;0.5</td><td>&lt;0.5</td><td>&lt;0.5</td><td>- &lt;0.5</td><td>- &lt;0.5</td><td>- 40.5</td><td>- 40.5</td><td>&lt;0.5</td><td>- &lt;0.5</td><td>- 40.5</td><td>- &lt;0.5</td><td>- 40.5</td><td>- &lt;0.5</td><td>&lt;0.5</td><td>&lt;0.5</td><td>3.6</td><td>Dry</td><td>Dry</td><td>3.5</td><td>6.5</td></u.5<> | - <0.5    | - <0.5    | <0.5      | <0.5     | <0.5      | <0.5      | - <0.5    | - <0.5    | - 40.5    | - 40.5                                                                                                                                                                             | <0.5      | - <0.5    | - 40.5    | - <0.5    | - 40.5    | - <0.5    | <0.5      | <0.5      | 3.6          | Dry        | Dry   | 3.5        | 6.5         |
| 10                                                                                                                                                                                                                                                                                                                                                                                        | 6         | 11        | 11        | 10       | 9         | 10        | 11        | <2        | 2         | 20                                                                                                                                                                                 | 14        | 38        | 25        | 111       | 205       | 200       | 216       | 180       | <2           | Dry        | Dry   | 42         | 21          |
| -                                                                                                                                                                                                                                                                                                                                                                                         | -         | -         |           | -        | -         | -         | -         | -         | -         | -                                                                                                                                                                                  |           | -         | -         | -         | -         | -         |           | -         | 3070         | Dry        | Dry   | 3320       | 6280        |
| <0.1                                                                                                                                                                                                                                                                                                                                                                                      | <0.1      | <0.1      | <0.1      | <0.1     | <0.1      | <0.1      | <0.1      | <0.1      | <0.1      | <0.1                                                                                                                                                                               | <0.1      | <0.1      | <0.1      | <0.1      | <0.1      | <0.1      | <0.1      | <0.1      | <0.1         | Dry        | Dry   | <0.1       | <0.1        |
| <0.5                                                                                                                                                                                                                                                                                                                                                                                      | 2.1       | 1.2       | 1.6       | 0.6      | 0.7       | 1         | 1.3       | <0.5      | 287       | 7.4                                                                                                                                                                                | 2.8       | 1.4       | 1.2       | 11.4      | 5         | 2.8       | 16.4      | 7.8       | 5.6<br><0.5  | Dry        | Dry   | 8.6        | 6<br>26.9   |
| <u.5< td=""><td>Z.1</td><td>1.2</td><td>1.6</td><td>0.6</td><td>0.7</td><td>- 1</td><td>1.3</td><td>&lt;0.5</td><td>- 287</td><td>7.4</td><td>2.8</td><td>1.4</td><td>1.2</td><td>11.4</td><td></td><td>2.8</td><td>16.4</td><td>7.8</td><td>88.1</td><td>Dry</td><td>Dry</td><td>65.4</td><td>153</td></u.5<>                                                                            | Z.1       | 1.2       | 1.6       | 0.6      | 0.7       | - 1       | 1.3       | <0.5      | - 287     | 7.4                                                                                                                                                                                | 2.8       | 1.4       | 1.2       | 11.4      |           | 2.8       | 16.4      | 7.8       | 88.1         | Dry        | Dry   | 65.4       | 153         |
| <0.5                                                                                                                                                                                                                                                                                                                                                                                      | <0.5      | <0.5      | <0.5      | <0.5     | <0.5      | <0.5      | <0.5      | <0.5      | 1.1       | <0.5                                                                                                                                                                               | <0.5      | <0.5      | <0.5      | <0.5      | <0.5      | <0.5      | 0.6       | <0.5      | <0.5         | Dry        | Dry   | <0.5       | 0.6         |
| -                                                                                                                                                                                                                                                                                                                                                                                         | -         | -         | -         | -        | -         | -         | -         | -         | -         | -                                                                                                                                                                                  | -         | -         | -         | -         | -         | -         | -         | -         | 10.3         | Dry        | Dry   | 4.9        | 8.1         |
| 0.02                                                                                                                                                                                                                                                                                                                                                                                      | < 0.01    | <0.01     | <0.01     | <0.01    | < 0.01    | < 0.01    | < 0.01    | <0.01     | <0.01     | < 0.01                                                                                                                                                                             | <0.01     | <0.01     | <0.01     | < 0.01    | < 0.01    | <0.01     | <0.01     | <0.01     | < 0.01       | Dry        | Dry   | <0.01      | <0.01       |
|                                                                                                                                                                                                                                                                                                                                                                                           |           | -         | -         |          |           | -         | -         | -         | -         | -                                                                                                                                                                                  |           |           | -         | -         | - 25      | -         | -         |           | <0.00001     | Dry        | Dry   | 0.01       | <0.01       |
| <1                                                                                                                                                                                                                                                                                                                                                                                        | <1        | <1        | <1        | <1       | <1        | 41        | <1        | <1        | 7         | <1                                                                                                                                                                                 | 2         | <1        | <1        | <1        | 25        | <1        | 4         | <1        | <1<br>21     | Dry        | Dry   | <1<br>12   | <1<br>18    |
|                                                                                                                                                                                                                                                                                                                                                                                           |           |           |           |          |           |           |           |           |           |                                                                                                                                                                                    |           |           |           |           |           |           |           |           |              |            |       |            |             |

Water Quality Objective values for surface water refer to the default trigger values for physical and chemical stressors in south-east Australia (upland rivers) for the
protection of 99% of aquatic species ANZECC / ARMCANZ (2000), they are not pollutant limits imposed by EPL 21266.

<sup>-</sup> Sample not required at this location.

<sup>^</sup> Due to a laboratory error metals for 17/11/2023 were not analysed. Metal analysis results are from 22/11/2023







## Snowy Hydro 2.0 Main Works Monthly EPL Sampling: 01 - 30 November 2023 - Treated Water

| Analyte                                  | Unit         | Limit of Reporting | Water Quality Objective Value*   |
|------------------------------------------|--------------|--------------------|----------------------------------|
| Field                                    |              |                    |                                  |
| pH                                       | pH Unit      | -                  | 6.5-8.5                          |
| Electrical Conductivity                  | μS/cm        |                    | 700 (EPL 41) / 200 (EPL 50)      |
| Oxidation Reduction Potential            | mV           | -                  | No Water Quality Objective Value |
| Temperature                              | *c           | -                  | 15                               |
| Dissolved Oxygen                         | % saturation | -                  | No Water Quality Objective Value |
| Turbidity                                | NTU          |                    | <25                              |
| Laboratory analytes                      |              |                    |                                  |
| Total suspended solids                   | mg/L         | 5                  | 5/10                             |
| Hardness as CaCO <sub>3</sub> (filtered) | mg/L         | 1                  | No Water Quality Objective Value |
| Nutrients                                |              |                    |                                  |
| Ammonia as N                             | μg/L         | 5                  | 200/2000^                        |
| Kjeldahl Nitrogen Total                  | μg/L         | 10                 | No Water Quality Objective Value |
| Nitrogen (Total)                         | μg/L         | 10                 | 350/-^                           |
| Reactive Phosphorus                      | μg/L         | 1                  | No Water Quality Objective Value |
| Phosphorus (Total)                       | μg/L         | 5                  | 100/300^                         |
| Inorganics                               |              |                    |                                  |
| Cyanide Total                            | μg/L         | 4                  | No Water Quality Objective Value |
| Hydrocarbons                             |              |                    |                                  |
| Oil and Grease                           | mg/L         | 5                  | 2/5^                             |
| Metals                                   |              |                    |                                  |
| Aluminium (dissolved)                    | μg/L         | 5                  | 55                               |
| Arsenic (dissolved)                      | μg/L         | 0.2                | 13                               |
| Chromium (III+VI) (dissolved)            | μg/L         | 0.2                | 1                                |
| Copper (dissolved)                       | μg/L         | 0.5                | 14                               |
| Iron (dissolved)                         | μg/L         | 2                  | 300                              |
| Lead (dissolved)                         | μg/L         | 0.1                | 3.4                              |
| Manganese (dissolved)                    | μg/L         | 0.5                | 1,900                            |
| Nickel (dissolved)                       | μg/L         | 0.5                | 11                               |
| Silver (dissolved)                       | μg/L         | 0.01               | 0.05                             |
| Zinc (dissolved)                         | μg/L         | 1                  | 8                                |
| Biological                               |              |                    |                                  |
| Faecal Coliforms                         | CFU/100mL    | 1                  | 10/100^                          |
| Biological Oxygen Demand                 | mg/L         | <5                 | 5                                |

| EPL 41     | EPL 50     |
|------------|------------|
|            |            |
| 19/11/2023 | 17/11/2023 |
| 7.71       | 6.51       |
| 108        | 162        |
| 207        | 199        |
| 18.33      | 17.59      |
| 109.5      | 73.8       |
| 92.2       | 122        |
|            |            |
| <5         | <5         |
| 33         | <1         |
|            |            |
| <10        | 40         |
| <100       | 300        |
| <100       | 400        |
| +          | <10        |
| <10        | <10        |
|            |            |
| <4         | <4         |
|            |            |
| <1         | <1         |
|            |            |
| 72 .       | <5         |
| 0.4        | <0.2       |
| <0.2       | <0.2       |
| 6.3        | <0.5       |
| 49         | <2         |
| 0.3        | <0.1       |
| 2.3        | <0.5       |
| 0.7        | <0.5       |
| < 0.01     | < 0.01     |
| 15         | <1         |
|            |            |
| <1         | <1         |
| <2         | <2         |

Note: Treated water was not being discharged at Talbingo ot Tantangara Reservoirs at the time of EPL sampling.

There is no 100th percentile limit for Nitrogen (Total).

- Works EIS.
- + Due to a laboratory error, no result was returned for this analyte
- ^ 90 Percentile concentration limit/100 Percentile limit
- Inflows to STP and CWTP do not directly correspond to outflow at RO as much of the water is reused on site







## Snowy Hydro 2.0 Main Works

Date

1/11/2023 2/11/2023

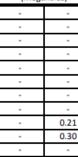
3/11/2023 4/11/2023

5/11/2023 6/11/2023 7/11/2023

8/11/2023 9/11/2023

10/11/2023 11/11/2023 12/11/2023 13/11/2023

14/11/2023 15/11/2023 16/11/2023 17/11/2023


18/11/2023 19/11/2023 20/11/2023 21/11/2023 22/11/2023 23/11/2023

24/11/2023 25/11/2023

26/11/2023 27/11/2023 28/11/2023 29/11/2023

30/11/2023

EPL 43 \* EPL 50 ^ Discharge volume (Megalitres) -





-



| EPL 44                        | EPL 45 | EPL 47 | EPL 48 | EPL 49 |  |  |  |  |  |  |  |
|-------------------------------|--------|--------|--------|--------|--|--|--|--|--|--|--|
| Discharge volume (Megalitres) |        |        |        |        |  |  |  |  |  |  |  |
| 0.40                          | 0.04   | 0.17   | 0.06   | 0.61   |  |  |  |  |  |  |  |
| 0.21                          | 0.04   | 0.15   | 0.08   | 0.38   |  |  |  |  |  |  |  |
| 0.36                          | 0.04   | 0.18   | 0.07   | 0.30   |  |  |  |  |  |  |  |
| 0.17                          | 0.04   | 0.17   | 0.08   | 0.35   |  |  |  |  |  |  |  |
| 0.21                          | 0.04   | 0.15   | 0.06   | 0.24   |  |  |  |  |  |  |  |
| 0.24                          | 0.03   | 0.14   | 0.06   | 0.45   |  |  |  |  |  |  |  |
| 0.31                          | 0.05   | 0.21   | 0.06   | 0.44   |  |  |  |  |  |  |  |
| 0.18                          | 0.04   | 0.16   | 0.07   | 0.17   |  |  |  |  |  |  |  |
| 0.18                          | 0.04   | 0.16   | 0.07   | 0.43   |  |  |  |  |  |  |  |
| 0.06                          | 0.05   | 0.17   | 0.07   | 0.96   |  |  |  |  |  |  |  |
| 0.27                          | 0.04   | 0.16   | 0.08   | 0.90   |  |  |  |  |  |  |  |
| 0.21                          | 0.04   | 0.16   | 0.06   | 0.29   |  |  |  |  |  |  |  |
| 0.40                          | 0.04   | 0.16   | 0.08   | 0.27   |  |  |  |  |  |  |  |
| 0.26                          | 0.04   | 0.13   | 0.05   | 0.27   |  |  |  |  |  |  |  |
| 0.27                          | 0.06   | 0.07   | 0.06   | 0.39   |  |  |  |  |  |  |  |
| 0.32                          | 0.03   | 0.23   | 0.06   | 0.23   |  |  |  |  |  |  |  |
| 0.16                          | 0.03   | 0.27   | 0.08   | 0.39   |  |  |  |  |  |  |  |
| 0.17                          | 0.05   | 0.16   | 0.06   | 0.35   |  |  |  |  |  |  |  |
| 0.31                          | 0.03   | 0.05   | 0.09   | 0.16   |  |  |  |  |  |  |  |
| 0.29                          | 0.09   | 0.24   | 0.07   | 0.58   |  |  |  |  |  |  |  |
| 0.27                          | 0.04   | 0.15   | 0.06   | 0.34   |  |  |  |  |  |  |  |
| 0.25                          | 0.04   | 0.16   | 0.08   | 0.49   |  |  |  |  |  |  |  |
| 0.07                          | 0.01   | 0.13   | 0.07   | 0.32   |  |  |  |  |  |  |  |
| 0.23                          | 0.07   | 0.20   | 0.08   | 0.47   |  |  |  |  |  |  |  |
| 0.31                          | 0.05   | 0.19   | 0.07   | 0.63   |  |  |  |  |  |  |  |
| 0.31                          | 0.03   | 0.16   | 0.07   | 0.87   |  |  |  |  |  |  |  |
| 0.03                          | 0.04   | 0.19   | 0.08   | 0.51   |  |  |  |  |  |  |  |
| 0.60                          | 0.04   | 0.20   | 0.08   | 0.61   |  |  |  |  |  |  |  |
| 0.34                          | 0.04   | 0.15   | 0.05   | 0.55   |  |  |  |  |  |  |  |
| 0.17                          | 0.02   | 0.07   | 0.08   | 0.53   |  |  |  |  |  |  |  |

Note: The EPL discharge volume limit for EPL 43 and 50 is 4.32 megalitres per day. Compliance with this criteria was met during the reporting month.

EPL 44 volume inflows were not recorded in October 2023 due to the technology upgrades.

- The maximum flow rate capacity for Lobs Hole STP/PWTP during the reporting month was 0.0 ML/day.
- The maximum flow rate capacity for Tantangara STP/PWTP during the reporting month was 0.9 ML/day
- Flow meter non-operational. Water volumes are considered to be similar daily flows to those recorded for each respective plant as works progressed at the same rate.

Water not discharged on this day