

webuild | clough | lane

REPORT

BI-ANNUAL ENVIRONMENTAL WATER REPORT DECEMBER 2024 – MAY 2025

S2-FGJV-ENV-REP-0129

Rev A

JUNE 2025

ABSTRACT

This document provides a summary of surface- and ground-water quality and associated information for monitoring conducted as part the Snowy 2.0 project, across monitoring locations pertaining to Environmental Protection Licence (EPL) 21266.

Revision Record

Rev.	Date Reason for Issue		Responsible	Accountable	Endorsed
Α	23/06/2025	Issued for review	S. Lang	E. Porter	D. Drummond

Document Verification

RACIE Record

RACIE RECOIU	
R esponsible:	Name: Scott Lang Job Title: Environmental Coordinator Signed: Date: 23/06/2025
	Bate. 20/00/2020
A ccountable:	Name: Ellen Porter Job Title: Environment Manager Signed:
	Date: 30/06/2025
C onsulted:	See distribution list on Page 3.
I nformed:	See distribution list on Page 3.
E ndorsed:	Name: Dave Drummond Job Title: QHSE Director Signed Date: 1 July 2025

RACIE Terms

Responsible The person who actually produces the document. A Accountable The person who has the answer for success or failure of the quality and timeliness of the document.	
A Accountable The person who actually produces the document. Accountable The person who has the answer for success or failure of the quality and timeliness of the document.	
The person who has the answer for success or failure of the quality and timeliness of the document.	
Consulted	
Consulted	
Those who must be consulted before the document is published.	
Informed	
Those who must be informed after the document is published.	
_ Endorsed	
Those who must approve the document before publication.	

Document Distribution Consulted Distribution List

Date	Format (1)	Addressee / Job Title	Compai	ny Location (2)
26/06/2025	OEC	Dave Langston SHL Senior Environment Advirsor	SHL	N/A

Informed Distribution List

Date	Format (1)	Addressee / Job Title	Company	Location (2)

NOTE: (1) OHC – Original Hard Copy / EC–Electronic Copy / HC – Hard Copy / Aconex – Electronic Document Management System

Revision Tracking

Rev.	Date	Description of Revision	
Α			

CONTENTS

Exec	cutive su	ımmary	5
1.	Introdu	uction	6
1.1.	Purpos	se	6
1.2.	Conditi	ions of Report	7
1.3.	EPL Va	ariations in Reporting Period	7
1.4.	Regula	atory Actions	8
1.5.	Project	t Updates	9
2.	Weath	er monitoring results	11
2.1.	Weathe	er Stations	11
2.2.	Rainfal	II Data	11
2.3.	Tempe	erature Data	13
3.	MONIT	FORING RESULTS	14
3.1.	Water (Quality Monitoring	14
3.2.	In Situ	Monitoring	
3.3.	Ground	dwater Monitoring	16
3.4.	Surface	e Water	18
	3.4.1.	Talbingo and Tantangara Reservoirs	18
	3.4.2.	Lobs Hole Surface Water	18
	3.4.3.	Marica Surface Water	19
	3.4.4.	Tantangara Surface Water	19
	3.4.5.	Rock Forest Surface Water	19
3.5.	Trends	S	20
	3.5.1.	Lobs Hole – Surface Water	20
	3.5.2.	Lobs Hole – Groundwater	21
	3.5.3.	Tantangara – Groundwater	23
	3.5.4.	Marica – Surface Water	24
	3.5.5.	Summary	25
3.6.	EPA No	otifiable Events	25
4.	Discus	ssion	26
5 .	Recom	nmendations	28
App	endix A -	- Snowy 2.0 - EPL sampling locations	29
App	endix B -	- EPL Results Tables	37

EXECUTIVE SUMMARY

Snowy 2.0 was declared State Significant Infrastructure and Critical State Significant Infrastructure by the NSW Minister for Planning under the provisions of the NSW Environmental Planning and Assessment Act 1979 and is defined in Clause 9 of Schedule 5 of the State Environmental Planning Policy (State and Regional Development) 2011. The Project was issued an Environmental Protection License (21266) comprising conditions governing the safeguarding of the surrounding environmental receptors.

The purpose of this report is to provide a six (6) monthly update of surface water and groundwater monitoring undertaken for the Snowy 2.0 project in accordance with Condition R4.2 of EPL 21266. For the purposes of this report, the reporting period is defined as days occurred between 1 December 2024 through to 31 May 2025.

Overall, the additional monitoring locations included in the December variation of EPL21266 allowed for increased oversight throughout the Project, including both surface water and groundwater locations.

Consistent algal blooms were observed across Talbingo and Tantangara reservoirs throughout the reporting period. The algal presence is consistent with historic observations made by the Project during the warmer months. The warmer ambient temperatures, reduction in reservoir water volumes (due to construction or potentially SHL BAU operations) and flow reductions are key contributors to these occurrences. The algal presence is reflected in the nutrient concentrations, elevated water temperatures and other such physio-chemical indicators within the water bodies.

Increases in select nutrient analytes were observed across the numerous water receptors was typically reported in locations within immediate proximity to spoil emplacement areas, received overland water flow stemming from emplacement areas or roadway runoff. The exceptions to the aforementioned observations include leachate basin concentrations and those locations comprised by smaller streams with abundant animal and plant matter within the body.

1. INTRODUCTION

Snowy 2.0 was declared State Significant Infrastructure and Critical State Significant Infrastructure by the NSW Minister for Planning under the provisions of the NSW Environmental Planning and Assessment Act 1979 and is defined in Clause 9 of Schedule 5 of the State Environmental Planning Policy (State and Regional Development) 2011.

An Infrastructure Approval No. SSI 9208 based on the Environmental Impact Statement (EIS) submitted for the Snowy 2.0 Exploratory Works was received on February 7, 2019.

An Environment Protection Licence No. 21266 (EPL - 21266) under Section 55 of the Protection of the Environment Operations Act 1997 (NSW) was issued to Snowy Hydro Ltd (Snowy Hydro) on May 9, 2019, by the New South Wales Environment Protection Authority (NSW EPA) for land based extractive activities at Lobs Hole and Talbingo Reservoir in Kosciuszko National Park.

Webuild, Clough, and Lane have formed Future Generation Joint Venture (FGJV) and have been engaged by Snowy Hydro Limited (SHL) to deliver both Stage 2 of Exploratory Works and Snowy 2.0 Main Works. As required by EPL 21266 Future Generation have undertaken a monthly monitoring program to assess the influence of the Snowy 2.0 Main Works project on groundwater and receiving surface water quality across the Project, specifically the work sites of Talbingo, Lobs Hole, Tantangara, Marica and Rock Forest. This report captures a six-month period within the Construction phase of the Project, as required by EPL 21266.

This report has been prepared by Scott Lang, Environmental Coordinator for FGJV. Scott holds a Bachelor of Science and has over 8 years industry experience.

This report has been reviewed by Dr Ellen Porter, Environmental Manager for FGJV. Ellen holds a PhD in Organic Geochemistry, is a Certified Environmental Practitioner (no. 1080), and has 14 years' experience in the field of environmental assessment, monitoring and reporting.

Noting the above, FGJV considers this report adequately prepared by suitably trained and qualified personnel.

1.1. Purpose

The purpose of this report is to provide a six (6) monthly update of surface water and groundwater monitoring undertaken for the Snowy 2.0 project in accordance with Condition R4.2 of EPL 21266.

Section 2, Condition P1.2 of EPL 21266 identifies the points required for monitoring, these points are presented in **Appendix A**.

For the purposes of this report, the reporting period is defined as days occurred between 1 December 2024 through to 31 May 2025.

1.2. Conditions of Report

As per Section 6, Condition R4.3 of EPL 21266 this report must include the information listed in Table 1-2 below.

Table 1-2: EPL 21266 Environmental Monitoring Report Requirements

Environmental Monitoring Report requirement	Report Section
Results of all water quality monitoring undertaken in the preceding six (6) month period	Appendix B, Appendix C
Results of all weather monitoring undertaken in the preceding six (6) month period	Section 2
Assessment of historical trends in all water sampling data for each monitoring point inclusive of the current six (6) month period	Section 3
Identification of instances where the water quality objective triggers for each relevant pollutant were exceeded at receiving water locations and/or where the predicted discharge water quality was exceeded at sediment basin discharge points;	Section 3, Appendix C, Appendix D
Include details of any actions taken by the Licensee in response to exceedances identified including but not limited to: i. additional monitoring ii. remedial actions; and iii. activation of trigger, action, response plans (TARPs);	Sections 3 and 4
Recommendations for future actions in relation to monitoring and/or management	Section 4

1.3. EPL Variations in Reporting Period

During the reporting period, one variation to EPL 21266 was formalised on 20 December 2024. undergoing a formal review. The variations made are noted below:

- Condition A1.3 was updated to include reference to works associated with Modification 4 works, the Marica Adit and the spoil emplacement areas Ravine Bay and Rock Forest.
- Condition P1.3: The location description for all monitoring points have been updated and monitoring points 98 122 have been added to the licence (EPL99 through to EPL122).
- Condition L2.4: 90 percentile limit for biological oxygen demand has been raised from 1mg/L to 2mg/L.
- Condition M2.2: Sampling method for several pollutants changed from grab sample to in-situ due to limitations in the transportation of samples.
- Condition O5.6: Reference to provide report to Regional Manager updated to info@epa.nsw.gov.au.
- Condition G3.1: Completed Programs table added for consistency.
- Condition U2: Sampling Quality Assurance Program PRS was removed.
- Condition E1.2-E2.2: References to provide reports to Regional Manager updated to new recipient address.
- Condition E4: Conditions requiring the development of and compliance with a Nitrogen Management.

1.4. Regulatory Actions

Clean-Up Notice 3507331 (SR-1638) was issued to SHL on the 1 December 2023. Notice 3507331 comprised directions regarding management of materials and water, more specifically, nutrient concentrations in ground water and surface water from the Project spoil emplacement areas exceeding the relevant WQO's. FGJV is actively addressing the ongoing high levels of nitrogen and nutrients, including:

- Conducting spoil coring of emplacement areas including GF01, Main Yard, and Lick Hole Gully to identify hot spots;
- Conducting additional water sampling with weekly in situ and comprehensive sampling in accordance with TARP 1;
- Installation of additional groundwater bores;
- Groundwater extraction with treatment of groundwater and leachate basin water at the construction water treatment plants;
- Review of water and spoil by water experts and consultants; and
- Investigation of options for improvements to the onsite treatment systems and processes.

On the 14 of November 2024, SHL was issued Variation 3510847 to Clean Up Notice 3507331. The variation encompassed updated definitions regarding material requiring management under the Notice. Specifically, the updates included:

- Immediately from the date of this Notice, being 1 December 2023, cease all further emplacement of waste sludge and filter cake material at all permanent and temporary spoil emplacement area within Kosciuszko National Park until a date approved in writing by the EPA. Filter cake material refers to suspended solids removed from the Water Treatment Plant. Waste sludge material refers to fines collected from:
 - Water collection tanks from the tunnels
 - Water treatment tanks
 - Wedge pits
 - Leachate basins.

- By 5pm on the date which is one (1) week from the date of this Notice being 8 December 2023, commence providing a fortnightly status report to the EPA via info@epa.nsw.gov.au and copy in carlie.armstrong@epa.nsw.gov.au on the progress of:
 - o a. The Action Plan provided in response to the Prevention Notice
 - o b. Extraction volumes and treatment of groundwater and surface water at relevant spoil emplacement locations where relevant guidelines have been exceeded
 - o c. All updated water quality monitoring data collect and analysed for monitoring points relevant to the spoil emplacement areas across the project. The data must:
 - Be provided in continuous excel format
 - Adopt mg/L as the unit of measurement
 - Not include negative values
 - Include consistent Limits of Detection across all reports and
 - Refer to relevant licence monitoring point numbers with no spacing (e.g. EPL1, EPL2)
- By 5pm on the date which is one (1) week from the date of this Notice, being 8 December 2023, establish meetings between Snowy Hydro and the EPA to provide a platform discussing the status of the response to the incident and next steps. The EPA recommends that these meetings are rotated fortnightly, with week 1 being led by operational staff, and week 2 being led by senior officers (e.g. Project Directors). Meeting invites can be directed to Andreas Stricker at andreas.stricker@epa.nsw.gov.au for distribution to relevant EPA attendees.

On 17 April 2025, SHL were issued with Variation of Clean Up Notice 3512129. The variation stated the NSW EPA allow for 'disposal of waste sludge or fines collected from Leachate Basins within lined permanent emplacement areas'.

1.5. Project Updates

This bi-annual monitoring update includes sampling events within the reporting period. This period included significant progress of the Main Works package of the Snowy 2.0 Project. A summary of construction activities at each site is outlined in **Table 1 – 5 below** on the following page.

Table 1-5: Key Construction Activities

LOCATION	KEY CONSTRUCTION ACTIVITIES
Lobs Hole	ACCOMMODATION CAMPS
	Exploratory Camp Accommodation – Fabrication installation and commissioning of 6 buildings and facilities. MAIN YARD
	 LH Main Office Expansion - Building installation and internal fit-out ongoing. Utilities installation and upgrades ongoing. Main yard surface temporary works ongoing. ECVT / MAT PORTAL
	 TBM 1 advancing up the alignment. Grouting in LST and other testing works ongoing. Emergency basin liner upgrades complete. Drilling subcontractor's scope complete at Marica West, the area has been deconstructed. MAT portal spoil yard construction works ongoing. MAIN OFFICE
	 Construction works on structural office complete, office fit out and service connections on going. Septic and sewerage installation complete. Car park and pad expansion complete. Spoil placement practically completed with final landform implementation works underway. GF01 leachate basin relined and sealed.
	Basin F10.5 reconstructed and relined. TALBINGO
	 Stage 2 excavation is ongoing. Transition C1 Invert slab CS01 completed. Preparation works for micro piling scope commenced. RAVINE BAY
	 Spoil placement ongoing. Piped connection between leachate basin and treatment plant continuing to transfer water. Further GCL liner installations across Cell 2 and 3. Leachate basins SB02 and SB03 constructed. Middle creek Bridge construction works, including rock filter dam.
Marica	 USS excavation works ongoing. Marica Adit Portal clearing and grubbing works complete. Lining of TBM 4 temporary emplacement area commenced. Marica camp expansion works continuing. Groundwater monitoring bores BH5411, BH5412, BH5413 installed and commissioned.
Rock Forest	Construction of access roadway to PSE area complete. No further works occurred throughout the reporting period.
Tantangara	 Construction of GCL lined PSE. Including 2 lined leachate basins and works progressed to include additional lined leachate basins completed and GCL lined cells nearing capacity. S2 expansions works commenced. Intake stage 2 works ongoing, with Stage 3 under review by SHL.

2. WEATHER MONITORING RESULTS

2.1. Weather Stations

There are several weather stations along the alignment of the Project that report real-time data. These include:

- "Lobs Hole" an automatic weather station managed by Future Generation in Lobs Hole Main Yard.
- "Cabramurra" an automatic weather station located near the lookout in the Cabramurra township managed by the Bureau of Meteorology (BoM).
- "Tantangara" an automatic weather station managed by Future Generation in Tantangara construction site.

The Tantangara and Lobs Hole gauges are in sub-alpine environments, with elevations of approximately 1200 m and 600 m, respectively. Cabramurra records substantially higher annual rainfall amount than the lower-elevation gauges at Lobs Hole and Tantangara. Tantangara and Lobs Hole weather stations record actual onsite conditions at the respective construction sites, while Cabramurra weather station, at 1470 m is typically representative of conditions at Marica, the rainfall data varies from occasional rainfall events experienced throughout the reporting period.

2.2. Rainfall Data

The cumulative rainfall within the reporting period

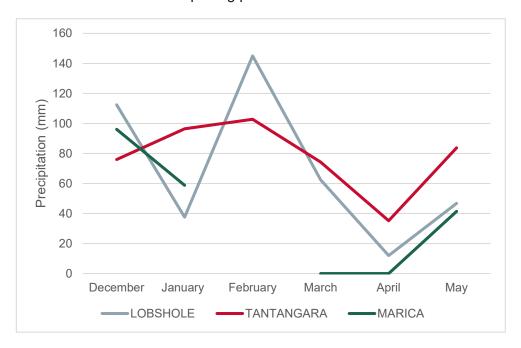


Figure 2-1: Cumulative Rainfall across Lobs Hole, Tantangara and Cabramurra

At each of the three rainfall recording sites (Tantangara, Lobs Hole, and Cabramurra), the highest volume of rain that fell in a single day are as follows:

- 44.2 mm at Lobs Hole 25 February 2025;
- 39.4 mm at Cabramurra (Marica) 7 December 2024; and
- 31.8 mm at Tantangara 1 December 2024.

On the five-day time scale, the heaviest precipitation events were as follows:

- Lobs Hole: 79.8 mm between 7 and 11 February 2025;
- Cabramurra (Marica): 53.4 mm between 11 and 16 January 2025; and
- Tantangara: 69 mm between 12 and 16 January 2025.

Table 2-1: Weather Conditions Within the Reporting Period

	Tantangara ²		Cabramurra (Marica)		Lobs Hole ¹	
Month	Monthly (mm)	LTA	Monthly	LTA	Monthly	LTA
December	76	127.2	96.1	76.3	112.4	94.13
January	96.4	135.87	58.8	146.3	37.6	105.67
February	102.8	47.4		36.47	145	78.8
March	74.3	56.3	0	86.5	62.4	55.6
April	35.2	46.7	0	77.7	12	59.4
May	83.8	47.3	41.4	90	46.8	74.5

^{1.} Lobs Hole long term average rainfall is taken from the Tumbarumba weather station.

Tantangara and Lobs Hole both reported monthly rainfall totals greater than long term averages 3 months out of the 6 reported whilst Marica reported rainfall conditions greater than the averages only once.

It is noted the onsite rainfall reporting for Marica is understood to vary from the Cabramurra records, with basin overtopping events indicating greater volumes received than at Cabramurra.

^{2.} Tantangara long term average rainfall is taken from the Adaminaby Alpine Tourist Park weather station.

2.3. Temperature Data

Figure 2-2 to Figure **2-3**: Marica - Minimum and Maximum Temperatures show temperature maximum and minimums across the project at Lobs Hole and Cabramurra weather stations.

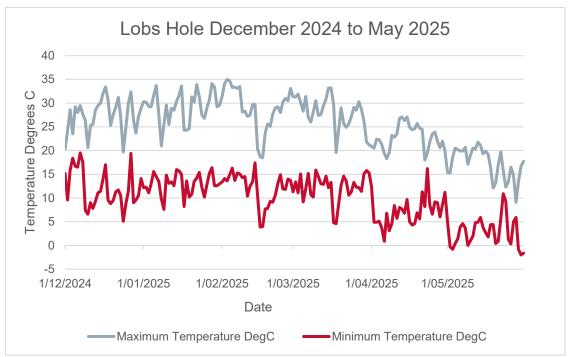


Figure 2-2: Lobs Hole - Minimum and Maximum Temperatures

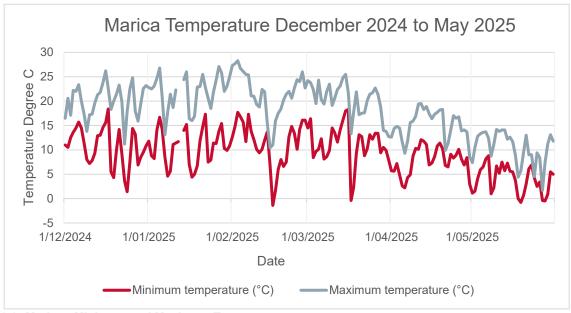


Figure 2-3: Marica - Minimum and Maximum Temperatures

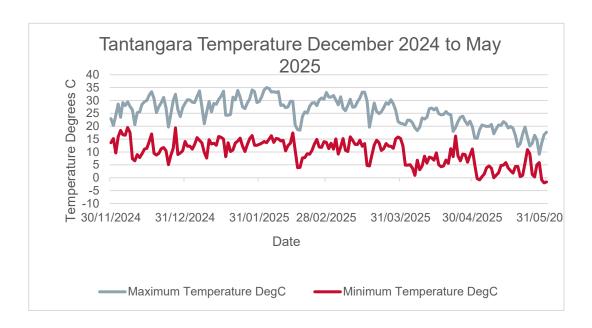


Figure 2-4: Tantangara - Minimum and Maximum Temperatures

Weather conditions observed during the reporting period were typical of seasonal transitions out of the summer weather systems into the cooler autumn conditions typical of the Snowy Mountains. Summer months are expected to include higher maximum temperatures, possibly more isolated storms and longer rainfall events. Autumn conditions typically result in decreasing maximum temperatures and potential rainfall volume reductions across sites.

Lobs Hole, Marica and Tantangara reached mean maximum temperatures of 34.7°C, 28.3°C and 32.5°C respectively with Lobs Hole reporting the highest temperatures of each site across the reporting period.

The elevations in temperature and rainfall volumes are possibly indicators of the El Nino climatic conditions across the National Park.

3. MONITORING RESULTS

3.1. Water Quality Monitoring

Water Quality Monitoring results are provided in **Appendix B** and **C** for monthly EPL monitoring events. The sampling work was performed in accordance with:

- S2-FGJV-ENV-PLN-0010 Water Management Plan Snowy 2.0 Main Works;
- S2-FGJV-ENV-PRO-0048 Water Monitoring Procedure;
- AS 5667:1 Water quality- Sampling: Guidance on the design of sampling programs and the preservation and handling of samples;
- AS 5667:4 Water quality Sampling: Guidance on the sampling of lakes, natural and manmade;
- AS 5667:6 Water quality Sampling: Guidance on the sampling of rivers and streams; and
- AS 5667:11 Water quality- Sampling: Guidance on the sampling of groundwater.

3.2. In Situ Monitoring

Under Section 6 Condition R4.1, the EPA must be notified of any results that exceed, or are outside the range of, relevant water quality trigger values within licenced premises or at the designated EPL monitoring points. Table 3-1 presents a summary of the numbers outside the range of acceptability. Further details are presented in Appendix B.

Table 3-1: Physio-Chemical Exceedances

Water Quality Objectives	DO (%)	EC (μS/cm)	рН	Turbidity (NTU)	Comment			
Range	90- 110	>30 and <350 / <20 and <30 reservoirs	>6.5- <8	<2 >25				
December 2024 to May 2025								
December	26	22	17	11	DO, EC and turbidity have a greater number of exceedances when compared to the previous reporting period.			
January	25	33	21	14	Physio-chemical indicators remain consistent with previous reporting periods.			
February	38	43	47	27	Periods of dry followed by days of intense rainfall throughout the reporting period are understood to influence the rise in occurrences of physiochemical parameter exceedances.			
March	36	27	38	11	Periods of dry and elevated temperatures resulted in locations reported as dry upon sampling.			
April	25	38	39	32	pH and turbidity exceedances were observed to be more frequent this reporting period. Noting the reduction in rainfall recorded throughout the period.			
May	31	43	38	49	May included EC exceedances increases across the parameter suite primarily due to lower stream flows, notable animal activities and occasional rainfall events.			

Dissolved oxygen (DO), turbidity and pH were prevalent across all water bodies were commonly accompanied by some specific nutrients within the reported samples. This is potentially influenced by observations of reduced water availability, algal presence, plant or animal matter decomposition or animals within the water body.

3.3. Groundwater Monitoring

Regular Groundwater monitoring events are undertaken to determine the conditions within the numerous subsurface water systems across the Project. Groundwater quality trigger levels for the Project are outlined in Table C-1 of the Main Works – Groundwater Monitoring Program.

Groundwater level monitoring is undertaken in accordance with EPL21266, the numerous Leachate Detection Procedures (LDP's) and the Water Monitoring Procedure.

Site specific groundwater level triggers as outlined in Attachment B of the Main Works – Groundwater Monitoring Program have been established to monitor whether observed drawdown is greater than construction related predicted drawdown. Groundwater piezometer data from an additional network of boreholes is collected and assessed by SHL.

The Project groundwater network was monitored regularly throughout the reporting period. Fluctuations in EC, turbidity and DO% was most pronounced in bores within proximity to placement activities. Increased sediment load in groundwater bores resulted in the commencement of a bore maintenance program, commencing at Tantangara.

Total and dissolved metals were observed in bores with increased sediment loads. These locations typically reflected sediment influenced water physiochemical characteristics. Increasing nutrient concentrations were reported in numerous groundwater locations adjacent placement areas. The most elevated nutrients were observed to correlate to rainfall events and down gradient locations, indicating a relationship with leachate migration following rainfall events.

3.3.1. **Lobs Hole**

Lobs Hole's groundwater monitoring bore network predominantly surround the emplacement areas or areas of former spoiling activities. The groundwater monitoring bore analytical exceedances reflect proximity to such activities and the apparent sedimentation build up within some locations. Bores within GF01 were observed to report analytical exceedances at greater concentrations than the remaining areas of Lobs Hole. The specific analytes consistently reported as exceedances are outlined below:

- Ammonia as N;
- Nitrite + Nitrate;
- Nitrite;
- Nitrogen (total);
- Hardness;
- Reactive Phosphorus;
- Phosphorus (Total);
- Arsenic (Dissolved);
- Iron;
- Chromium (III+VI) (dissolved);
- Copper (dissolved);
- Magnesium;
- Nickel (dissolved) and;
- Zinc (dissolved).

3.3.2. Tantangara

Tantangara's groundwater bore network consists of six locations surrounding the temporary emplacement area and the permanent spoil emplacement area which is under construction. The bores are reflective of the emplacement area conditions, including heavy sedimentation within the bores. The analytes reported consistently were:

- Ammonia as N;
- Nitrogen (total);
- Nitrite + Nitrate;
- Nitrate;
- Nitrite
- Iron;
- Reactive and total phosphorus;
- Aluminium;
- Arsenic;
- Chromium;
- Copper;
- Lead;
- Magnesium;
- Nickel;
- Silver; and
- Zinc.

3.3.3. **Marica**

Marica's groundwater bore network was altered during the final stages of the reporting period, with the locations being decommissioned as part of the Modification 3 works. The analytical concentrations reported within the bores (prior to decommissioning) remained largely stable, with dissolved metals and select nutrients representing the majority of the consistent exceedances. Consistently exceeding analytes have been included below:

- Ammonia as N;
- Nitrogen (total);
- Nitrate;
- Nitrite + Nitrate
- Iron;
- Reactive and total phosphorus;
- Aluminium;
- Arsenic;
- Chromium;

- Copper;
- Lead;
- Nickel;
- Silver; and
- Zinc.

3.4. Surface Water

Routine surface water monitoring is undertaken in accordance with CoA Condition 31 and Environmental Protection Licence 21266 (EPL - 21266) to determine if project activities may be promoting negative impacts to receiving water quality and the adopted Water Quality Objectives (WQO).

The WQOs are specified in Table 2-2 of the Main Works – Surface Water Monitoring Program.

3.4.1. Talbingo and Tantangara Reservoirs

Analyte concentrations that exceed or are outside the range of relevant water quality trigger values are presented in Appendix B.

Exceedances are commonly the below analytes:

- Total Phosphorus;
- Nitrite + Nitrate as N;
- Ammonia;
- Total Nitrogen;
- Thermotolerant Coliforms;
- Aluminium (dissolved);
- Chromium (III+VI); and
- BOD.

3.4.2. Lobs Hole Surface Water

The predominant water body within the Lobs hole region is the Yarrangobilly River (Appendix B). It along with its tributaries constitute the EPL surface water sampling locations within the Lobs Hole area. Generally, analytical results within the reporting period were less than, or within, relevant water quality trigger values except for:

- Total Phosphorus
- Nitrite + Nitrate as N;
- Ammonia;
- Nitrogen (total);
- Arsenic (dissolved)
- Aluminium (dissolved);
- Chromium (dissolved);

- Copper (dissolved)
- Iron (dissolved);
- Lead (dissolved);
- Nickel (dissolved).

3.4.3. Marica Surface Water

The predominant water body within the Marica area is the headwaters of the Eucumbene River (excluding the leachate basins). This body of water saw exceedances in the following:

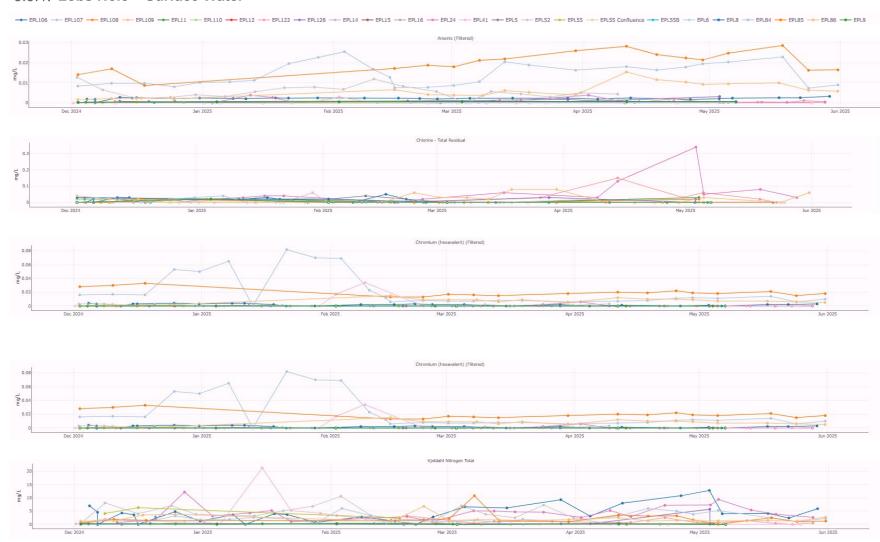
- Total Phosphorus;
- Reactive Phosphorous;
- Nitrite + Nitrate as N;
- Chromium (dissolved); and
- Aluminium.

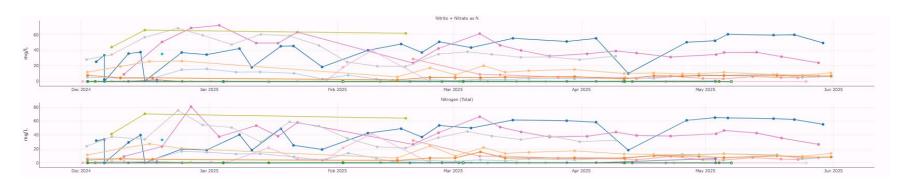
3.4.4. Tantangara Surface Water

The predominant water bodies within Tantangara (excluding the reservoir) are the Nungar and Kelly's Plain Creeks (Appendix A). The Tantangara surface water bodies reported exceedances in the following:

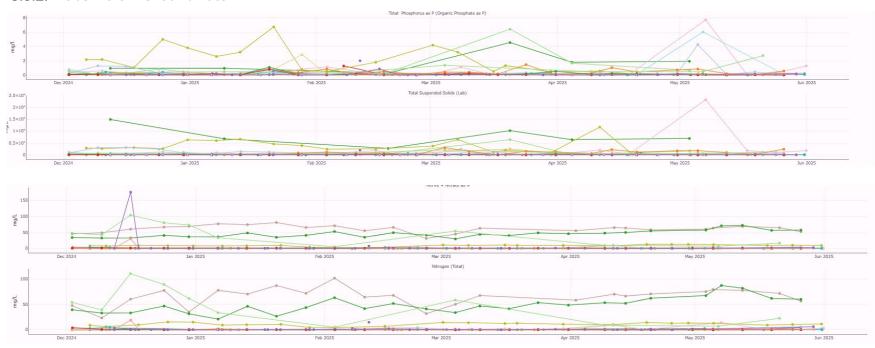
- Total Phosphorus
- Nitrite + Nitrate as N;
- Nitrogen (total);
- Iron (dissolved)
- Aluminium (dissolved);
- Chromium (dissolved);and
- · Iron (dissolved).

3.4.5. Rock Forest Surface Water


The predominant water body within Rock Forest is Cameron's Creek (**Appendix A**). Two samples are collected, one from upstream and one from downstream of the Snowy 2.0 disturbance areas to make up the surface EPL sampling locations.

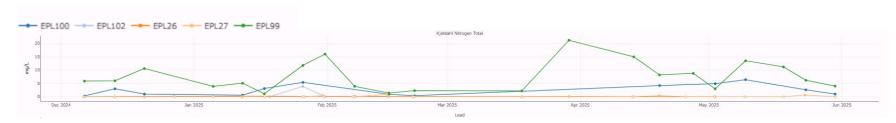

The monitoring results demonstrate that the water quality in the Rock Forest has consistency across multiple EPL monitoring events with the exceedances likely to be related to the decades of agricultural use. High nitrogens are likely caused by fertiliser application and low rates of natural vegetation recovery throughout the grazing pasture. This is supported by the lack of any spoiling activities occurring at the location throughout the reporting period and EPL36 (up gradient) reporting elevations of such analytes.

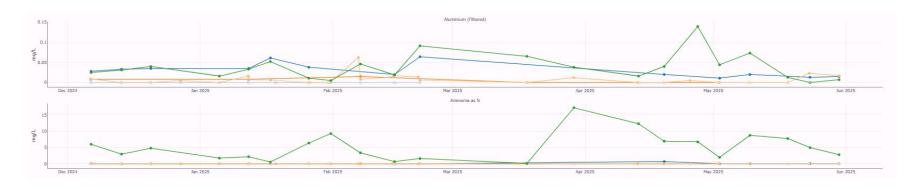
Analyte concentrations that exceed, or are outside the range of relevant water quality trigger values are presented in **Appendix C**.

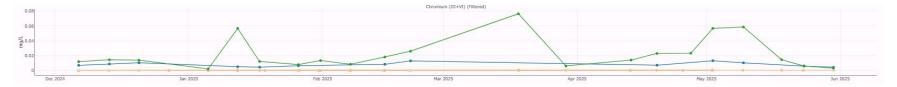

3.5. Trends

3.5.1. Lobs Hole – Surface Water

3.5.2. Lobs Hole – Groundwater






3.5.3. **Tantangara – Groundwater**

3.5.4. Marica – Surface Water

3.5.5. **Summary**

Lobs Hole locations were observed to respond to the significant rainfall volumes occurring in the earlier stages of the reporting period with an observable upwards trends reported for hardness and select heavy metal concentrations. Nutrients such as nitrate, nitrite and total nitrogen appeared to trend upwards alongside total phosphorous. Groundwater locations across Lobs Hole reported relatively stabilised analytical trends throughout the reporting period. Increases in nutrients in groundwater monitoring sites adjacent to spoil emplacement areas in Lobs Hole, Ravine Bay and Tantangara were noted, although some of these trends are potentially attributable to surface water ingress, high sediment loads and seasonal variation.

Overall, the Tantangara and Marica locations were potentially stable across the reporting period, noting rainfall events saw slight ballooning during times of prolonged rainfall. Hardness, and nutrient concentrations were the most observable increases.

3.6. EPA Notifiable Over toppings

Event based wet weather overtopping water quality monitoring is undertaken in accordance with the SWMP Trigger Action Response Plan (TARP 2) to monitor stormwater overtopping sediment basin discharges. Sediment basins for the Project have been designed to meet, at a minimum, the 85th percentile 5-day rainfall volume (mm).

During the reporting period, occurrences of rainfall exceeding site design capacities of the 85th percentile 5 – day rainfall depths are listed below:

- 6 December 2024 Lobs Hole EPL106 overtopped following a total of 153 mm of rainfall since 27 November 2024.
- 7 December 2024 Lobs Hole Pad 2 overtopped following 160 mm of rainfall since 27 November 2024.
- 7 December 2024 Lobs Hole GF01 Basin overtopping 160 mm of rainfall since 27 November 2024.
- 7 December 8 December 2024 Marica MC03 and MC02 respectively overtopped following 71 mm of rainfall since 2 December 2024.
- 10 February 2025 Lobs Hole F3a, F5a, F8.5 and F9 overtopped following 51 mm of rainfall since 5 February 2025.
- 10 February 2025 Marica MC01, MC02 and MC03 overtopped following 75 mm of rainfall in 24 hours.
- 11 February 2025 Tantangara CH300 and Batch Plant overtopped following 57.7 mm of rainfall since 6 February 2025.
- 11 February 2025 Lobs Hole F8.5, MYLS and 10.5 overtopped following 89.9 mm of rainfall since 5 February 2025.
- 14 February 2025 Lobs Hole F1 and F3b overtopped following 135 mm of rainfall since 5 February 2025.
- 14 February 2025 Marica EPL101 overtopped following 78 mm of rainfall in the 10 hours previous.
- 23 May 2025 Tantangara Batch plant and CH1000 basins overtopped following 49.4 mm of rainfall since

- 27 May 2025 Lobs Hole Basin 10b overtopped following a total of 41.6 mm of rainfall since 22 May 2025.
- 28 May 2025 Lobs Hole EPL84 overtopped following a total of 45 mm of rainfall since 22 May 2025.

4. DISCUSSION

Monitoring of all water locations occurred between 1 December 2024 and 31 May 2025 across Lobs Hole, Tantangara, Marica and Rock Forest.

As previously mentioned throughout this report, climate variations and their impacts on water quality were understood to influence the surface and groundwater water monitoring locations across the sites during the reporting period.

A small number of surface water monitoring locations are understood to reflect ephemeral characteristics including irregular stream flows (typically resulting from rainfall events or incidents across Projects), period of dry or no water and those locations immediately down gradient of surface water migration locations. The reliance on external events for water and flow rates resulted in occasional monitoring locations reported as dry or without representative water quantity for sampling.

High water temperatures have contributed to the increased algal growth and green discolouration of the Talbingo and Tantangara Reservoirs consistent with historical observations made by the Project. The algal presence was typically accompanied by increases to nutrients and occasional thermotolerant coliform accompaniment. Lower reservoir water levels, increased intensity of the rainfall events and the higher temperatures separating such events further promotes the consistent growth of algal blooms.

Increases in select nutrient exceedances were observed across the numerous water receptors was typically reported in locations within immediate proximity to spoil emplacement areas, received overland water flow stemming from emplacement areas or roadway runoff. The exceptions to the observations include leachate basin concentrations and those locations comprised by smaller streams with abundant animal and plant matter within the body.

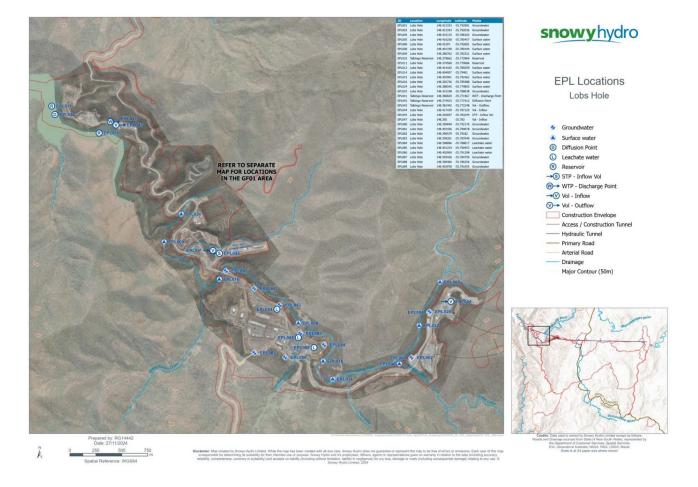
Increases to reported thermotolerant coliform units are potentially related to the ability for some coliform strains within the subgroup to grow in the environment (not necessarily related to faecal matter) and for the large numbers of animal matter (bird and horse faecal matter or decomposition) to contribute to water sample volumes. This circumstance may arise when collecting samples from shorelines or stream banks containing animal faecal matter (bird and horse faecal matter), have animals present within the waterbody or in a state of decomposition. Due to the extremely low levels within the reservoir, notes of animal matter have been identified in photographs collected during sampling events. These circumstances may influence the reported nutrient concentrations due to the decomposition of plant and animal matter, warmer temperatures and potential flow reductions and may contribute to some of the broader nutrient fluctuations reported during the period.

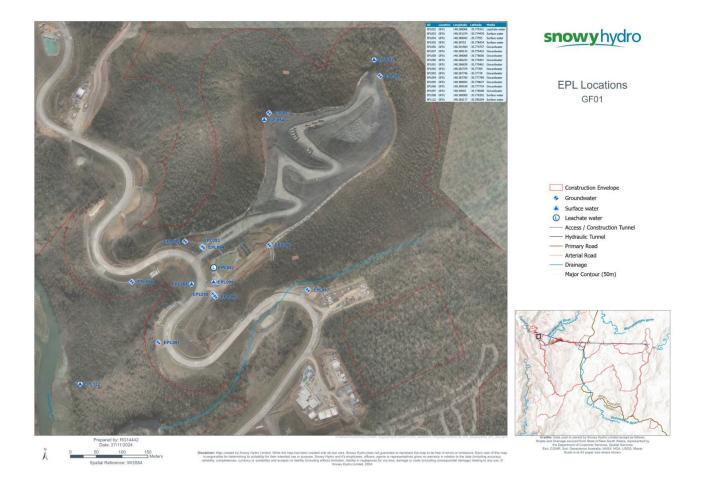
Where groundwater monitoring has revealed nutrient exceedances adjacent to emplacement areas, extraction and treatment efforts will be allocated in line with our obligations to prevent harm to the environment.

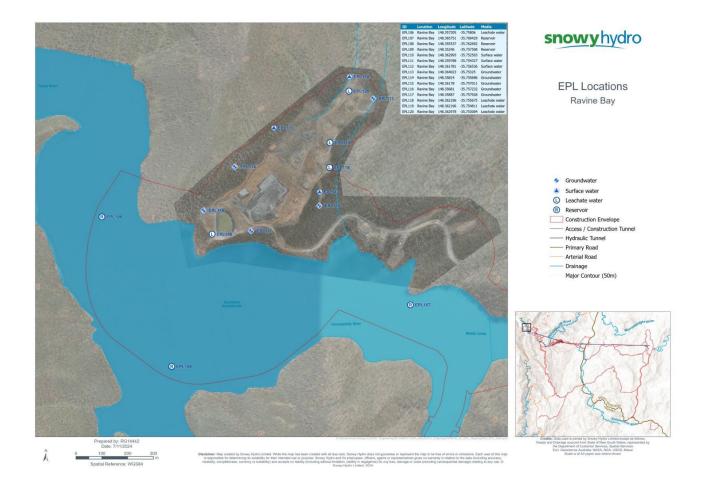
Marica surface monitoring locations remained stable throughout the reporting period, as the new basins for the Modification 4 works were constructed. Exceptions given to the leachate basin locations reporting greater differences between monitoring events, which is thought to be influenced by increasing blasting volumes resulting in larger nutrient concentrations, separating these structures from other such surface water locations.

The Tantangara, Marica and Rock Forest stream-based locations are primarily located above and below gradient of sealed or similar surfaced roadways, with exception to those located at confluences. All locations are anticipated to be influenced by contributing nutrient rich saturation zones, hooved animal disturbance and fluctuating states of dry and flood. Examples include results within locations EPL31 (up gradient of works), EPL34 (up gradient of works) and EPL35 which all contain minor nutrient concentrations irrespective of being above or below gradient to the project works.

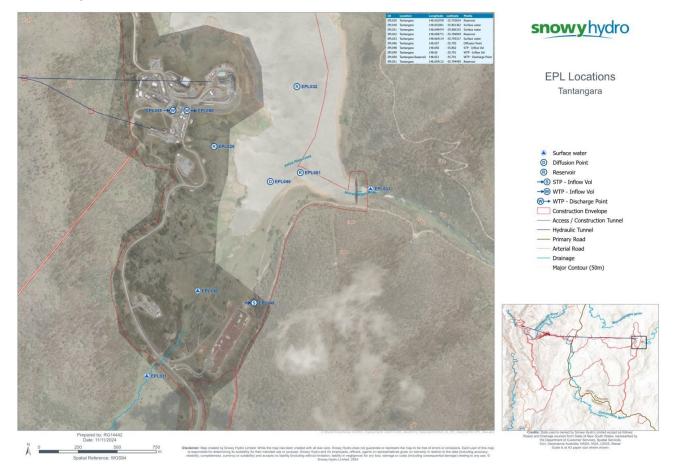
Overall, the various Tantangara surface water locations were potentially stable across the reporting period, noting rainfall events saw slight ballooning during months such as January. Those analytes with observable trending results were influenced by rainfall events across the period, which may have influenced the observable increasing trends. Ammonia was observed to report a slight increase in overall trends throughout the period. Dissolved manganese saw an overall reduction in analytical trends until events at stages throughout the period initiated a possible upwards trend. Nitrate concentrations saw slight increases overall, with ballooning occurring during the rainfall periods. Reactive Phosphorous was observed to increase slightly with a consistent ballooning during January.

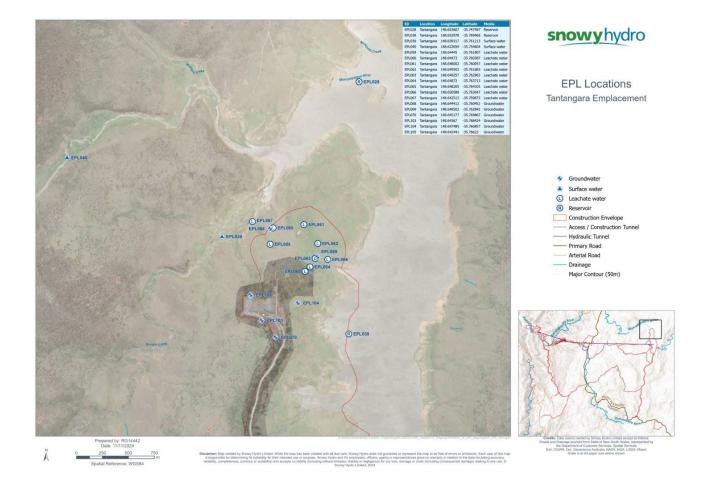

5. RECOMMENDATIONS

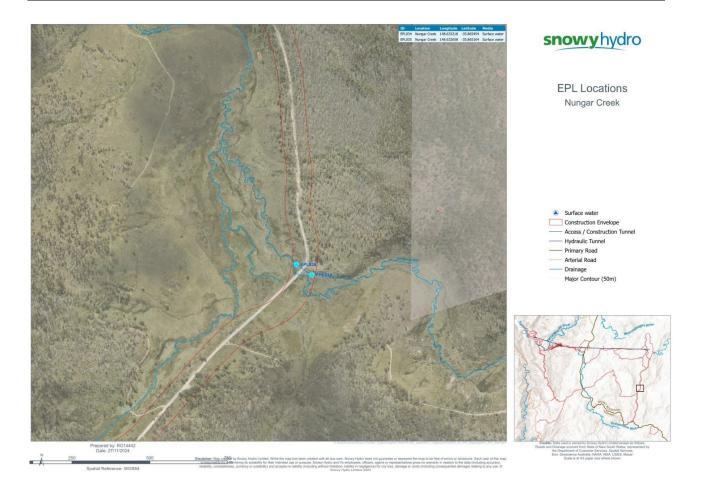

Based on the information contained within this report, consideration for the following recommendations may provide assistance with the on-going management of water across the Project.

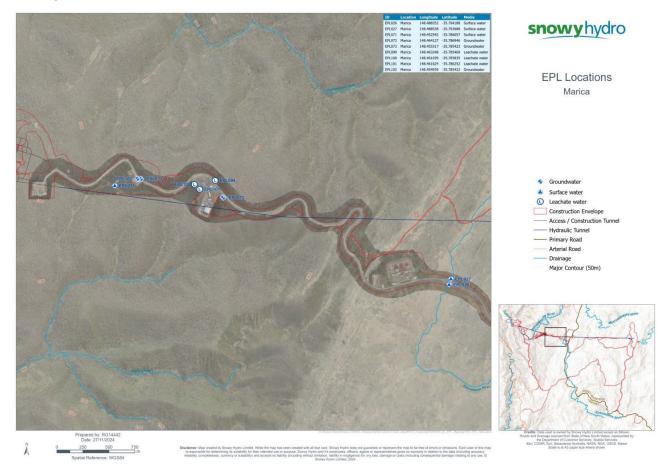

- Deploy automatic loggers within key reservoir locations, focusing on additional analytes such as Nitrate.
- ii. Deploy maintenance schedule for sediment laden groundwater bores regularly.
- iii. Install operational extraction pumps in suitable locations.
- iv. Allocate resources to manage data for water across the Project.

APPENDIX A - SNOWY 2.0 - EPL SAMPLING LOCATIONS


LOBS HOLE






TANTANGARA

MARICA

ROCK FOREST

APPENDIX B - EPL RESULTS TABLES

2024 EPL 21266 In Situ Water Quality Measurements
EPL Monthly Monitoring December 2024
Table 1 - Surface Water Quality Data

Table 1 - Surface Water (Quality Data					Water Quality	y Objectives (see no	te 1)				
River and Minor Watero	ourses		Temp (°C)	90 (%)	DO (mg/L)	EC (µS/cm) 30 - 350	TDS (mg/L)	pH 6.5 - 8.0	Redox (mV)	Turbidity (NTU) 2 - 25		
Date and Time	EPL Site ID	Location Description	Temp (°C)	DO (%)	DO (mg/L)	EC (µS/cm)	TDS (mg/L)	pH	Redox (mV)	Turbidity (NTU)	Field Comments	Context
2/12/2024, 12:48 pm	EPL5	Yarrangobilly River, upstream of the exploratory tunnel and construction pad	21.21	140.3	12.45	60	39	7.86	75	9.18	Clear skies, rain in recent days	This location is upstream of works and is therefore representative of background conditions.
2/12/2024, 1:15 pm	EPL6	Wallaces Creek, upstream of Yarrangobilly River and Wallaces Creek confluence	21.42	150.0	13.25	83	54	7.84	121	2.02	Clear skies, rain in recent days. turbidity very low	This location is consistent with background conditions for December 2024.
2/12/2024, 2:48 pm	EPLS	Yarrangobilly River, downstream of Lick Hole Gully	22.78	148.2	12.76	75	48	8.02	119	8.15	Clear sunny day, rain in recent days	Elevated DO is consistent with the background conditions for December 2024, and elevated pH within the historical ranges.
2/12/2024, 3:24 pm	EPL9	Yarrangobilly River, downstream of the accommodation camp and upstream of Talbingo Reservoir	22.99	134.6	11.54	71	46	7.84	131	8.19	Clear skies, rain in recent days	Elevated DO is consistent with the background conditions for December 2024.
2/12/2024, 1:02 pm	EPL12	Yarrangobilly River, immediately downstream of portal pad	21.04	131.7	11.72	59	38	7.82	105	8.33	Clear skies, rain in recent days	Elevated DO is consistent with the background conditions for December 2024.
2/12/2024, 1:35 pm	EPL14	Yarrangobilly River, downstream of road construction areas	21.35	123.1	10.9	62	41	7.78	123	7.04	Clear skies, rain in recent days, turb very low	Elevated DO is consistent with the background conditions for December 2024.
2/12/2024, 1-52 pm	EPL15	Yarrangobilly River, downstream of road construction areas	21.74	140.3	12.33	62	41	7.76	128	7.23	Clear skies, rain in recent days. Turb very low	Elevated DO is consistent with the background conditions for December 2024.
2/12/2024, 3:46 pm	EPL16	Yarrangobilly River, downstream of road construction areas	23.04	125.6	10.76	71	46	7.72	139	9.39	Clear skies, rain in recent days	Elevated DO is consistent with the background conditions for December 2024.
11/12/2024, 8:47 am	EPL24	Yarrangobilly River tributary (Watercourse 2), directly downstream of road	16.6	55.2	5.37	253	165	7.24	56	42.2	Clear sunny day.	Low DO and elevated turbidity could be attributed to the 73.8mm Lobs Hole received over the last days.
6/12/2024, 9:15 am	EPL26	Eucumbene River downstream of Marica Road	13.59	109.3	11.37	38	25	7.53	112	2.46	Clear water, no odour, high flowing, rain event overninght, a bit turbulent water	All readings are within WQO limits.
6/12/2024, 9:25 am	EPL27	Eucumbene River upstream of Marica Road	12.22	146.0	15.66	33	22	7.22	117	1.81	Clear water, no odour, high flowing, rain event overninght, a bit turbulent water	This location is upstream of works and is therefore representative of background conditions.
7/12/2024, 11:01 am	EPL30	Kellys Plain Creek, downstream of accommodation camp and laydown areas	17.34	104.4	10.02	49	32	7.39	120	27.3	100 mm rain so far in the week	Elevated turbidity could be attributed to the 73.6mm received over the last few days.
7/12/2024, 10:47 am	EPL31	Kellys Plain Creek, upstream of accommodation camp and laydown areas	17.75	100.6	9.57	30	20	7.57	122	8.0	Cloud and rain. heavy rain, iver 100mm last few days	All readings are within WQO limits.
7/12/2024, 10:26 am	EPL33	Murrumbidgee River, downstream of Tantangara reservoir outlet	20.04	106.8	9.71	26	17	7.61	125	8.4	Cloud and rain. heavy rain, iver 100mm last few days	Low EC aligns with historical data for December 2024.
7/12/2024, 9:42 am	EPL34	Nungar Creek, upstream of Tantangara Road	18.4	95.7	8.98	36	23	7.71	81	17.0	Cloud and rain, heavy rain, iver 100mm last few days.	This location is upstream of works and is therefore representative of background conditions.
7/12/2024, 9:59 am	EPL35	Nungar Creek, downstream of Tantangara Road	18.06	88.9	8.4	21	14	7.19	113	16.7	Cloud and rain. heavy rain, iver 100mm last few days	Low EC is consistent with background conditions. Low DO is being monitored to ensure variance is attributed to natural fluctuations.
22/12/2024, 11-51 am	EPL36	Camerons Creek, upstream of works in Rock Forest	20.16	65.9	5.97	49	32	7.25	199	38.8	Clear sunny day, Water is very stagnant. Recent construction in paddock nearby, Water is dear, no odour, slightly dark brown.	This location is upstream of works and is therefore representative of background conditions.
22/12/2024, 11:17 am	EPL37	Camerons Creek, downstream of works in Rock Forest	22.7	87.3	7.53	61	40	7.45	219	27.6	Clear sunny day. Water is very low flow. Brown non turbid. No odour. Recent works started nearby at Rf.	Low DO and elevated turbidity are consistent with background conditions for this location in December 2024.
16/12/2024, 9:47 um	EPL52	GF01 leachate basin	24.71	118.1	9.78	1170	746	7.09	141	12.4	Sunny day, clear water, no odour, algae growing in the basin	High DO and EC are due to runoff accumulating in the sediment basin Water was taken for treatment at the process water treatment plant or re-use where parameters were met.
-	EPL53	GF01 surface water upstream east	-	-		-	-	-	-	-		Dry site, no flow
-	EPL54	GF01 surface water upstream west	-	-		-	-	-	-	-	-	Dry site, no flow
16/12/2024, 10:08 am	EPL55	GF01 surface water downstream	20.67	63.0	5.63	1230	786	6.87	148	4.20	Sunny day, clear water, no odour, considerable flow	Low DO and high EC can be attributed to recent rain events causing increased runoff in the area.
7/12/2024, 12:31 pm	EPL67	Nungar Creek surface water downstream west from Tantangara emplacement area	20.67	108.4	9.72	23	15	7.44	131	16.6	Cloud and rain. heavy rain, over 100mm last few days.	Low EC is within the historical range and is consistent with background conditions for this location for December 2024.
6/12/2024, 10:49 am	EPL71	Surface water downstream of Marica emplacement	18.92	124.8	11.59	96	62	7.46	153	92.4	Rainy day, no odour, turbid water, no flowing	Elevated turbidity could be attributed to the 56.2mm received over the last days
10/12/2024, 12-22 pm	EPLS4	F8 Basin	24.99	63.0	5.2	557	357	8.71	101	1000	Clear, sunny day. Turb is greater than 1000ntu	High pH, EC, and turbidity due to runoff accumulating in the sedimen basin. Water was taken for treatment at the process water treatmen plant or re-use where parameters where met.
10/12/2024, 1:55 pm	EPL85	MY07 Basin	26.04	123.3	9.95	675	433	9.14	43	1000	No odour, turbid, not suitable for reuse	High DO, EC, pH, and turbidity are due to runoff accumulating in the sediment basin. Water was taken for treatment at the process water treatment plant or re-use where parameters where met.
10/12/2024, 12:29 pm	EPL86	LMGO1 Basin	24.66	87.3	7.23	1140	732	8.11	113	109	Clear, sunny day.	High DO, EC, pH, and turbidity are due to runoff accumulating in the sediment basin. Water was taken for treatment at the process water treatment plant or re-use where parameters where met.
2024 EDI 21266 In 62	u Water Ouali	. Marriagnan										

20	24 EPL	21266 lr	Situ	Water	Quality	Measurement
EDI	Month	by Monitor	ine De	combo	2024	

Table 2 - Reservoir Water	Quality Data					Water Quality	y Objectives (see no	te 2)				
Talbingo and Tantangers	Reservoirs		Temp (°C)	DO (%)	DO (mg/L)	EC (uS/cm)	TDS (mg/L)	He	Redox (mV)	Turbidity (NTU)		
				90 - 110		20 - 30		6.5 - 8.0		1-20		
					•							
Date and Time	EPL Site ID	Location Description	Temp (°C)	DO (%)	DO (mg/L)	EC (uS/cm)	TDS (mg/L)	pH	Redox (mV)	Turbidity (NTU)	Field Comments	Context
		·										Elevated DO and EC are consistent with background conditions in the
4/12/2024, 9:35 am	EPL10	Talbingo Reservoir, downstream of road works and upstream of water intake point	23.78	110.1	9.3	75	49	7.84	120	0	clear day, heavy rain yesterday, multiple rain events recently. Turbidity incorrect	Yarrangobilly River for December 2024, low turbidity aligns with the
												historical ranges.
												Elevated DO and EC are consistent with background conditions in the
4/12/2024, 9:19 am	EPL11	Talbingo Reservoir, downstream of outlet	23.69	115.7	9.8	75	49	7.83	115	0.6	clear day, heavy rain yesterday, multiple rain events recently. Turbidity reading much lower	Yarrangobilly River for December 2024, low turbidity aliens with the
		• •					l .				than expected, likely incorrect.	historical ranges.
											Clear sunny day with minimal wind. Shallow depth with vegetation growth present. No visible	Elevated EC is consistent with background conditions in the
31/12/2024, 3:02 pm	EPL28	Tantangara Reservoir, upstream of works in the mouth of the Murrumbidgee River	25.6	107.2	8.76	35.3	23	7.62	128.7	5.9	sheen or odour. Campers present in the direct vicinity of the sampling point.	Yarrangobilly River for December 2024.
		Tantangara Reservoir, downstream of works area and upstream of lower				24					Clear sunny day. No boat available. Sample taken from edge. Windy increasing, turb increased	
29/12/2024, 11:58 am	EPL29	Murrumbidgee River	20.69	62.4	5.6	24	16	7.92	141	19.1	at edge of lake	Low DO remains with the historical data.
											Clear sunny day. No boat available. Sample taken from edge. Windy edge of lake increasing	
29/12/2024, 11:41 am	EPL32	Tantangara Reservoir, Tantangara Intake. Downstream of construction works	21.49	56.5	4.99	29	19	7.89	164	12.6	turb.	Low DO remains with the historical data.
		Tantaneara Reservoir, variable location dependant on tide and reservoir levels.										
28/12/2024, 10:52 am	EPL38	Between the emplacement area and the ancillary facilities for emplacement	18.98	63.6	5.9	24	16	6.28	245	7.0	Sunny day.	Low DO and pH align with the historical data for this location in December 2024.
		activities										December 2024.
		Confluence of Nunear Creek and Tantaneara Reservoir, variable location dependent										Low DO and oH alien with the historical data for this location in
28/12/2024, 9:40 am	EPL39	Confluence of Nungar Creek and Tantangara Keservoir, variable location dependent on tide and reservoir levels. Upstream of Tantangara construction works	16.24	61.6	6.05	26	17	6.03	248	9.4	Sunny day.	Low DO and pH sign with the historical data for this location in December 2024.
		on tipe and reservoir levels. Upstream or Fantangara construction works										December 2024,
		Confluence of the upper Murrumbidgee River and Tantangara Reservoir, variable									Sunny clear day with minimal wind. Algae and aquatic plant life present. Visible sediment. No	
21/12/2024, 11:59 am	EPL40	location dependent on tide and reservoir levels. Upstream of works	20.3	96.4	8.71	26.1	19	7.63	176.1	4.26	sunny clear day with minimal wind. Algae and aquatic plant life present. Visible sediment, No odour or sheen. Reservoir level 13%, only accessible via shore.	All readings are within WQO limits.
		location dependent on tide and reservoir levels. Opstream or works									obour or sheen. Reservoir level 13%, only accessible via shore.	
												Elevated EC and low DO levels, likely resulting from decreased water
29/12/2024, 11:01 am	EPL 46	Tantangara Reservoir, diffuser outlet discharging into Tantangara Reservoir from	20.56	60.6	5.44	62	40	7.86	164	8.4	Clear sunny day. No boat available. Sample taken from edge.	levels and increased organic matter, were observed. These locations
25/12/2024, 11:01 am	EPL 40	Tantangara STP/PWTP	20.50	60.6	3.44	02		7.60	104	0.4	clear sunny day. No boat available, sample taken from edge.	will be closely monitored during the next sampling round.
												will be closely monitored during the next sampling round.
29/12/2024, 11:09 am	EPL51	Tantangara Reservoir, downstream of Tantangara STP/PWTP diffuser outlet	20.7	55.1	4.94	29	19	7.40	181	3.8	Clear sunny day. No boat available, Sample taken from edge.	Low DO levels, likely resulting from decreased water levels and
												increased organic matter, were observed for December 2024.
		•										•
Table 3 - Treated Water 0	Quality Data						Objectives (see no					
Talbingo			Temp (°C)	DO (%)	DO (mg/L)	EC (µS/cm)	TDS (mg/L)	pH	Redox (mV)	Turbidity (NTU)		
			-		-	700	-	6.5 - 8.0		25		
Date and Time	EPL Site ID	Location Description	Temp (°C)	DO (%)	DO (mg/L)	EC (µS/cm)	TDS (mg/L)	вH	Redox (mV)	Turbidity (NTU)	Field Comments	Contest
		Lobs Hole STP/PWTP Final Effluent Quality Monitoring Point. Downstream of final										
1/12/2024, 9:37 am	EPL41	treatment, prior to discharge to Talbingo Reservoir.	28.1	64.3	5.03	18	12	7.37	183	101	NTU: reading error. Water crystal clear, samples warm - water run through beluga	No water was being dicharged at the time of sampling.
											•	-
able 4 - Treated Water C	uslity Data						Objectives (see not					
Tantangara			Temp (°C)	DO (%)	DO (mg/L)	EC (µS/cm)	TDS (mg/L)	pH	Redox (mV)	Turbidity (NTU)		

											•	
Table 4 - Treated Water C	Quality Data					Water Quality	Objectives (see not	te 3)				
Tantangara			Temp (°C)	DO (%)	DO (mg/L)	EC (µS/cm)	TDS (mg/L)	pH	Redox (mV)	Turbidity (NTU)	1	
						200		6.5 - 8.0		25		
Date and Time	EPL Site ID	Location Description	Temp (°C)	DO (%)	DO (mg/L)	EC (µS/cm)	TDS (mg/L)	pH	Redox (mV)	Turbidity (NTU)	Field Comments	Context

2024 EPL 21266 In Situ Water Quality Measurements EPL Monthly Monitoring December 2024

Table 5 - Groundwater Q	uslity Date					Water Quality	Objectives (see no	te 1)				
GF01 Surface Water and			Temp (°C)	DO (%)	DO (mg/L)	EC (uS/om)	TDS (mg/L)	Ма	Redox (mV)	Turbidity (NTU)		
			- : '			30 - 350		6.5 - 8.0				
Date and Time	EPL Site ID	Location Description	Temp (°C)	DO (%)	DO (mg/L)	EC (µS/cm)	TDS (mg/L)	pН	Redox (mV)	Turbidity (NTU)	Field Comments	Context
9/12/2024, 10:49 am	EPL56	GF01 groundwater upstream east	15.55	28.8	2.87	238	155	7.17	72	20.6	SWL-10.56m, sunny day, turbid water, no odour	All readings are within WQO limits.
9/12/2024, 11:03 am	EPL57	GF01 groundwater upstream west	15.98	14.6	1.45	247	160	7.81	84	53.6	SWL-13.54 m, sunny day, turbid water, no odour	All readings are within WQO limits.
9/12/2024, 11:52 am	EPLSS	GF01 groundwater downstream	16.05	17.6	1.73	878	562	6.02	118	158	SWL-6.26 m, sunny day, turbid water, no odour	Elevated EC is generally consistent with historical range for this location. Low pff will be monitored however borehole pump extraction method is in the process of being upgraded.
21/12/2024, 10:57 am	EPL68	Tantangara groundwater downstream West	15.06	67.9	6.84	18	12	5.24	294	15	WIL:3.86m (top of casing). Clear sunny day. Pump almost set up for extraction. Water is clear, no odour.	Low pH and EC are generally consistent with previous results in the last months. These conditions are following expected changes due to altered climatic conditions.
21/12/2024, 10:42 am	EPL69	Tantangara groundwater downstream East	16.63	84	8.17	32	21	5.62	279	2.5	WI: 2.38m (top of casing). Clear sunny day. Ongoing ground disturbance nearby due to PSE. Water is non turbid, no odour.	Low pH is generally consistent with the historical data. These conditions are following expected changes due to altered climatic conditions.
21/12/2024, 9:04 am	EPL70	Tantangara groundwater upstream	16.97	58.3	5.63	108	70	6.53	236	67.9	WI: 6.07m (top of casing), Clear, sunny morning. No recent rain events. Water is clear, non turbid, no odour.	This location is upstream of works and is therefore representative of up gradient conditions.
13/12/2024, 10:59 am	EPL 72	Marica groundwater upstream	15.83	34.7	3.44	118	77	5.48	211	164	SWL- 35.25 m, sunny day, turbid water, no odour	This location is upstream of works and is therefore representative of up gradient conditions.
13/12/2024, 11:46 am	EPL73	Marica groundwater downstream	5.22	107.5	10.77	324	211	6.04	242	242	SWL- 13.23 m, sunny day, turbid water, no odour	This location is consistent with the up gradient conditions.
25/12/2024, 8:20 am	EPLBO	LHG groundwater upstream	18.71	21.2	1.97	842	539	6.47	8	76.2	SWL- 20.34m (top of casing), Clear sunny morning. Water is slightly turbid, no odour.	This location is upstream of works and is therefore representative of up gradient conditions.
25/12/2024 9:19 am	EPLS1	LHG groundwater downstream	17.85	10.3	0.97	847	542	6.82	-58	963	WL: 3.69m (top of casing). Clear sunny day. Water is very clear with sediment setiling at the	Elevated EC is consistent with up gradient conditions for December
25/12/2024, 8:34 am	EPL82	MY groundwater upstream	17.96	71.6	6.73	2720	1740	6.5	-6	73.7	bottom, no odour. High turbidity due to bottom of the sleeve. Wil: 9.31m (top of casing), Clear sunny morning. Water is very clear, no odour. Very high EC readine, usually this soot has high EC.	2024. This location is upstream of works and is therefore representative of up cradient conditions.
25/12/2024, 10:05 am	EPL83	MY groundwater downstream	18.73	10.8	1.01	581	372	6.29	69	201	WL: 3.97m (top of casing), Clear sunny day. Recent works neaby with an excavator creating bunds. Water is slightly turbid, no odour	up gradent concisions. Low pH and high EC align with the historical ranges and some fluctuations in pH levels due to the climatic conditions have been changed.
25/12/2024, 8:49 am	EPL87	MY groundwater downstream	17.68	17.3	1.65	663	424	6.26	129	1000	WL: 4.01m (top of casing). Clear sunny morning. Water is very brown turbid. Same colour as basin adjacent. Dirt like odour. NTU has surpassed 1000.	Low pH levels align with historical data. However, some fluctuations in pH levels have been observed due to changing climatic conditions.
25/12/2024, 9:47 am	EPLSS	MY groundwater downstream	18.07	13.5	1.27	818	523	7.01	-141	2.4	WL-3.22m (top of casing). Clear sunny day. Some ground disturbance nearby with an excavator building bunds. Water is clear with a very strong sulphur smell	Elevated EC aligns with the up gradient conditions for December 2024.
25/12/2024, 8:00 am	EPL89	LHG groundwater downstream	15.96	20.5	2.02	374	243	6.61	154	254	WL: 3.13m (top of casing), Clear sunny morning. Water is clear with sediment settling at the bottom. No odour. Plently of animal acat surrounding bore	Elevated EC aligns with the up gradient conditions for December 2024.
9/12/2024, 10:38 am	EPL 90	GF01 groundwater downstream	15.8	63.6	6.3	90	58	6.23	72	239	SWL-12.35 m, sunny day, turbid water, no odour	Low pH is consistent with up gradient ranges for this location in December 2024.
9/12/2024, 10:28 am	EPL 91	GF01 groundwater downstream	16.46	20.7	2.02	305	199	6.89	43	57.7	SWL- 7.74 cm, sunny day, turbid water, no odour	All readings are within WQO limits.
9/12/2024, 11:17 am	EPL 92	GF01 groundwater downstream	15.62	80.5	8.01	136	88	6.6	111	244	SWL-12.25 m, sunny day, turbid water, no odour	All readings are within WQO limits.
9/12/2024, 11:23 am	EPL 93	GF01 groundwater downstream	15.43	15.8	1.58	251	163	7.12	-57	133	SWL- 15.38 m, sunny day, turbid water, no odour	All readings are within WQO limits.
9/12/2024, 11:27 am	EPL 94	GF01 groundwater downstream	15.45	18.1	1.81	173	113	6.89	-72	76.9	SWL- 12.21 m, sunny day, turbid water, no odour	All readings are within WQO limits.
9/12/2024, 11:44 am	EPL 95	GF01 groundwater downstream	16.05	15.1	1.49	608	389	6.04	105	88.9	SWL-6.58 m, sunny day, turbid water, no odour	Low pH and elevated EC are consistent with up gradient ranges for this location in December 2024.
9/12/2024, 11:37 am	EPL 96	GF01 groundwater downstream	15.74	52.5	5.19	1500	959	7.51	13	484	SWL- 4.57 m, sunny day, turbid water, no odour	Elevated EC is consistent with the up gradient ranges for this location in December 2024.
9/12/2024, 11:59 am	EPL 97	GF01 groundwater downstream	16.03	19	1.87	478	311	6.41	109	18.8	SWL- 6.4 m, sunny day, turbid water, no odour	Low pH and elevated EC are consistent with the up gradient ranges for this location in December 2024.

		Sn	owy Hydro 2.0 Main Works																																
	Monthly EPL San	ngling: 01-31 Ja	nuary 2025 - Groundwater																														\neg		\neg
				0536	0502	DATE:	PMI.	CPARE	69170	69572	6932	EPLEO	DNB	050	PUB	pur	crus .	crum	EPS 10	05.16	69582	67530	67504	67406	PUR	DP-UP	DATE:	CPUID.	Druge	CPARS .	671113	675.114	CPLUS.	PLUE	erup.
				1748	ara.			LP440	LIFLU	EPL/4	LIFC/2	LPC80	17CH	1744	17144	545	LP LOS	LFLan	III.W	100.00	LPL SE	arcas.	17.00	in.a	LP-LAC	1000	17.114	LPLANA.	Drawn	in.m	artis.	L/LLIA	arana .	Draw	Dian.
Analyse	Unit	Limit of Reporting	Water Quality Objective Value*	1																															- 1
Physiochemical				20/01/05		20/01/25	25/01/25	25/01/25	25/01/25	26/01/05	36/01/05	13/90/95	13/91/95	13/91/95	1941/25	1941/05	13/01/25	13/01/25	20/00/25	20/01/05	6/01/25	20/01/25	20/01/25	20/01/05	6/00/05	20/01/25	12/01/05	25/81/25	25/01/25	25/86/95	9/01/25	9/01/05	\$491/25	995/25	
pit .	pin Civil		654	7.32	2.0	5.83	6.1	6.36	6.45	6.87	6.54	6.77	6.77	6.61	6.17	5.75	6.35	6.33	5.74	642	2.3	6.94	6.32	6.11	7.14	6.00	7.53	6.41	6.27	7.00	4.35	7.42	7.33		643
Electrical Conductivity	pQem		30-353	343	246	1200	34	24	- 44	×	133	676	66.4	3650	563	545	830	349	72	337	130	343	676	353	860	424	432	12	60	176	135	383	365	181	136
Oxidation Reduction Partential			No Water Quality Objective Value	256	227	191	195	191	267	329	295	-52	-46	-86	56	270	-150	51	274	268	254	28	48	193	29	121	-63	204	197	182	156	85	-313	130	
Temperature	*		No Water Quality Objective Value	15.82	27.69	20.06	14.98	15.5	17.67	12.53	18.50	20.04	17.53	18.12	3.0	17.6	28.36	28.39	35.00	29.94	17.13	17.6	17.52	20.68	17.32	29.12	12.04	26.39	10.01	16.86	13.93	16.59	15.52	26.55	
Dissolved Caygon	Kesturation		No Water Quality Olgertive Value	31.4	23.5	30.6	80.9	76.5	54.3	43.1	54.8	10.4	10	13.6	16.6	95.7	38.1	33.7	63.8	34.0	45.1	29.5	34.3	30.4	24.4	11	64.3	643	41.7	55.9	900.4	18.6	10.1	71.3	
Turbidity	MIU		No Water Quality Objective Value	24.7	59.7	90.5	0.8	196	1000	62.1	111	62.2	645	64.6	160	1000	69	133	167	25.8	201	50.9	87.5	65.5	379	4.1	40.7	4.2	60.9	3.5	702	2.6	27%	1000	536
Laboratory analytes																																			\neg
136	ne/s	5	No Water Quality Objective Value	9	7	100	- 6	313	1,460	27	- 6	26	277	172	206	6,600	6	161	106	36	519	900	72	124	272	21	111	30	89	13	341	25	229	6,770	464
Shefree to CaCO3	ne)	1	No Water Quality Objective Value	154	136	441	2		29	13	22	348	422	1,340	84	131	112	64	36	125	40	124	115	350	311	142	121	2		43	- 0	204	179	85	-0
Nutrienta		_																															$\overline{}$	$\overline{}$	\neg
	10%	10	13	10	110	50	100	30	20	20	20	112	100	100	+10	230	310	30	20	10	+10	30	100	10	100	10	30	32	120	100	130	10	110	120	100
Note - Nitrate as N (MOs)	100	10	15	120	300	27 ADD	640	100	600	- 10	- 10		-	-	30	6,490	1	- 10	140	130	30	- 1	- 1	22,300	32,600	160	-100	3/3	340	2842	10		- 1		30
Geldahi Nitrogen Yotal	nell .	100	No Water Quality Clancitive Yorket	(100	<100	6.688	£100	4100	600	C100	/106	300	400	200	200	3.598	596	200	100	200	<100	100	4338	4.100	756	100	200	4335	100	200	Z1.000	4330	4186	42000	4300
Nissgen (Tatal)	10%	300	350	200	300	87.400	600	200	1,300	1200	1200	200	400	200	200	11.000	100	200	200	300	1999	100	1222	26,800	33,800	300	200	800	330	3,000	<1,000	1230	1200	42,000	1300
Beactive Phosphorus	100		15	15	10	11	71		17	21	12	1	1	2	- 6	-	- 1	7	10	30	11	36	14	12	-	21	15	10	-	1	1	- 11	1	17	
Phosphona (Total)	ne/h	- 11	22	60	20	60	50	140	1230	50	30	40	190	20	30	3 191	50	40	220	50	30	75.0	95.0	1,090	150	900	20	- 60	90	20	160	20	- 10	540	490
Incomercy																																			-
Countile Total	self.	4	4		44	44	44	- 4	- 44	- 4	- 41	- 44	44	44	c4	- 4	- 4	- 4	- 44	44	- 44	48	44	- 41	- 4	- 0	- 44	- 4	- 64	- 44	- 4	44	- 4	44	48
the force decay		_			-	-						-		-																-	-				$\overline{}$
Bydraca-bana Oil and Grease	ne).	-	5	(1.0	710	/14	71.0	/10	710	41.0	75.0	41.0	e1.0	21.0	71.0	710	710	/10	/10	/1.0	75.0	75.0	75.0	71.0	710	710	71.0	71.0	71.0	75.0	71.0	710	41.0	/10	71.0
Metals																																			-
Auminium (total)	165		No World Quality Claritive Yorke	144	166	2.133	336	1366	18300	477	SAN																								
Aurentum (disselved)	16/5	-	27	- 12	- 12	-	- 43	-	-0	-	-0	- 43	- 43	- 12		- 0	- 0	- 0	10	- 4	- 45	- 45	- 43	- 43	- 0	- 0	- 0	- 0	- 0	- 43	35	-0	- 12	-0	-0
Americ Dated	100	0.2	No Water Coulds Objective Value	-0.1	2.2	2.1	+0.2	0.1	13	_			-	-			-	-	_	_	-			-	-	-	-	_	_	-	-	-	_	_	_
Anaric (disched)	100	82	9.8	40.2	2.2	20.2	e9.2	412	462	49.2	412	2.9	5.0	85	2.7	20.2	12.2	0.3	49.2	62	- 63	4.9	85	0.5	/02	112	0.6	20.2	/12	26.2	0.4	6.7	14	0.6	0.5
Chromium 201-WE Stated	10%	4.1	No Water Quality Claritive Value	0.4	0.8	5.9	0.9	1.6	14	-		-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-			-		
Openier SI WI Manifest	100	0.2	0.04	10.2	10.2	0.2	+0.2	+0.2	10.2	10.2	9.2	10.2	10.2	10.2	10.2	0.4	102	10.2	10.2	-0.1	+0.2	+0.2	10.2	10.2	0.2	102	16.2	10.2	10.2	0.2	+0.2	10.2	10.2	+0.2	10.2
Canner (total)	100	85	No Water Quality Objective Value	14	12.6	3.6	0.1	22	18.6	-		- 72				-				-	-	-	- 7		- 72	-				-			-	-	_
Canner (dissolved)		85		12	3.2	0.8	485	415	455	30.0	10	415	415	285	16	285	205	41	40.5	40.5	415	415	48.5	- 11	2.6	405	40.5	15	16	6.7	311	8.6	415	415	40.5
Jos Debil	100	2	No Water Quality Objective Value	121	368	4,300	328	1.060	12,400	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
los (disubrell	100	1	300	12	12	2	66	-	12	12	10	4	220	1.140	2	12	50	12	6	4	+2	-	- 1	12	+2	12	12	12	12	12	36	12	12	12	12
Lead Parish	100	- 61	No Water Quality Objective Value		6.9	25.1	01	0.7	45	- 1							- "										-	-			-		_	_	$\overline{}$
Lead (dissolved)	and a	41		40.1	48.1	61	48.1	451	451	451	411	411	411	46.1	481	461	40.1	40.1	49.1	40.1	AS	411	48.1	46.1	461	(01	46.1	481	481	46.1	0.4	481	411	431	46.1
Managere Suited	140	9.1	No Water Quality Objective Value	18.0	17.7	494	117	90.0	138	-	-	-	-	-	-		-	-	-	-	-	-		-	-	-	-	-	-		-	-	-	-	-
Manager (Grades)	100	0.5	1,300	61	57.6	201	97.4	21	7.0	2.2	6.7	102	100	354	969	37.2	164	19.4	61	106	66.1	106	202	772	2.1	827	224	11	9.2	17.0	104	306	510	98.4	272
Noted Detail		85	No Water Guelly Objective Value	40.5		12.2	60	- 13	50			-		-			-			-		-				-	- 1		- "			-	-	-	
Noted (described)	100	9.5	ACTION COMPANY CONTRACT	10.5	10.5	60	45	455	19.5	- 13	43.5	15.0	4.8	0.8	5.5	10	10	11	14	11	11	26	15	12.3	2.4	2.6	0.0	485	435	30	0.5	7.4	415	0.9	1.0
Mean December		0.04	No Water Quality Objective Value	10.00		0.12	1001	1021	1021	_	-		_	_			_	_	-		-		-		-	- 11	-				_	-	_	_	_
Cher (Geshell)	100	0.01	0.02	45.05	46.03	10.01	1001	(02)	(0.2)	(0.1)	20.01	r0.01	r0.01	10.01	46.00	10.01	1001	z0.01	(9.2)	49.01	20.01	25.05	49.06	40.00	49.00	v1.01	400	1001	1001	e0.06	/021	46.00	r0.01	r0.01	19.01
Zinc hetail	100		No Water Quality Objective Value	3	3	34	41	- 6	33	-	-	-	-	-	-	100	1000	1000	-	-	-	-	-	-	-	-	-		-	-	1000	-		-	
The infrarbant	-	-	2.4	1	- 0	11	- 14	-	- 0		- 43	43	- 43	-	- 1	- 0	- 0	- 0	-	1	12	43		12	-	95	- 0	- 0		62	-	-		-	- 0

Snowy Hydro 2.0 Main Works Monthly EPL Sampling: 01-31 January 2025 - Talbingo and Tantangara Reservoir

Analyte	Unit	Limit of Reporting	Water Quality Objective Value
Field			
pH	pH Unit	-	6.5-8
Electrical Conductivity	μS/cm		20-30
Oxidation Reduction Potential	mV		No Water Quality Objective Value
Temperature	°C	-	No Water Quality Objective Value
Dissolved Oxygen	% saturation	-	90-110
Turbidity	NTU	-	1-20
Laboratory analytes			
Total suspended solids	mg/L	5	No Water Quality Objective Value
Hardness as CaCO ₃ (filtered)	mg/L	1	No Water Quality Objective Value
Nutrients			
Ammonia as N	μg/L	10	10
Nitrite + Nitrate as N (NOx)	μg/L	10	10
Kjeldahl Nitrogen Total	μg/L	100	No Water Quality Objective Value
Nitrogen (Total)	μg/L	100	350
Reactive Phosphorus	μg/L	1	5
Phosphorus (Total)	μg/L	10	10
Inorganics			
Cyanide Total	μg/L	4	7
Hydrocarbons			
Oil and Grease	mg/L	1	5
Metals			
Aluminium (dissolved)	μg/L	5	55
Arsenic (dissolved)	μg/L	0.2	13
Chromium (III+VI) (dissolved)	μg/L	0.2	1
Copper (dissolved)	μg/L	0.5	14
Iron (dissolved)	μg/L	2	300
Lead (dissolved)	μg/L	0.1	3.4
Manganese (dissolved)	μg/L	0.5	1,900
Nickel (dissolved)	μg/L	0.5	11
Silver (dissolved)	μg/L	0.01	0.05
Zinc (dissolved)	μg/L	1	8
Biological			
Faecal Coliforms	CFU/100mL	1	10/100^
Biochemical Oxygen Demand	mg/L	2	1/5^

	1	1	ı	I		I		I		1		
EPL10	EPL11	EPL28	EPL29	EPL32	EPL38	EPL39	EPL40	EPL46	EPL51	EPL107	EPL108	EPL109
15/1/25	15/1/25	19/1/25	19/1/25	19/1/25	18/1/25	18/1/25	4/1/25	19/1/25	19/1/25	4/1/25	19/1/25	19/1/25
7.62	7.97	7.76	7.1	7.52	7.63	7.53	7.29	6.95	7.1	8.16	8.17	6.97
97	79	30	25	26	38	27	22.4	26	25	49	43	85
184	177	212	241	-48	200	201	199.1	244	238	170	169	175
25.85	25.2	18.28	19.19	18.94	18.47	14.94	24.8	19.01	19.01	24.24	23.75	23.04
63.5	63.7	109.1	92.4	91.9	74.6	90	100	90	91	71.8	69.4	81.3
0	1	8.6	8.9	7.1	30.6	9.6	4.13	6.3	7.4	3.1	3.4	6.3
	•		•			•					•	
-S	-5	-5	-5	-5	34	-5	-5	-5	5	-5	-5	17
43	38	9	9	9	9	13	9	9	<4	17	14	14
		•	•			•						
20	50	<10	<10	40	<10	10	10	<10	<10	<10	10	<10
<10	5	-2	4	<10	8	10	4	2	<10	-2	8	<2
200	200	300	300	400	400	200	300	400	300	200	200	200
200	200	300	300	400	400	200	300	400	300	200	200	200
2	-4	4	1	4	3	3	4	4	4	5	2	2
30	<10	40	90	60	80	60	50	60	50	<10	10	<10
-04	-4	-4	-4	<4	<4	-4	<4	<4	-4	-4	<4	-64
	-											
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
đ	-5	30	30	30	31	27	25	30	33	6	-5	-5
0.5	0.3	0.3	0.3	0.3	0.3	<0.2	<0.2	0.3	0.3	0.2	<0.2	0.2
<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
<0.5	⊲0.5	<0.5	⊲0.5	⊲0.5	<0.5	<0.5	⊲0.5	<0.5	⊲0.5	<0.5	⊲0.5	<0.5
36	16	278	273	280	285	161	77	278	310	6	6	5
<0.1	⊲0.1	<0.1	⊲0.1	⊲0.1	<0.1	⊲0.1	⊲0.1	<0.1	⊲0.1	<0.1	⊲0.1	<0.1
2.0	<0.5	1.6	1.7	1.6	2.0	4.5	5.7	1.7	1.8	<0.5	<0.5	<0.5
<0.5	<0.5	<0.5	⊲0.5	-d0.5	<0.5	<0.5	<0.5	-0.5	-0.5	<0.5	⊲0.5	<0.5
<0.01	⊲0.01	<0.01	⊲0.01	⊲0.01	<0.01	⊲0.01	⊲0.01	<0.01	⊲0.01	<0.01	⊲0.01	<0.01
<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<4	<1
590	2,700	100	-	-	-	-	-	-	80	-		-
-2	<2	3							<2			

[•] Water Quality Objective values for Talbings and Tantangara Reservoir refer to the default trigger values for physical and chemical stressors in south-east Australia (fresh lakes and reservoirs) for the protection of 95% of aquatic species ANZECC / ABMCANZ (2000), they are not pollutant limits imposed by 69 1,2266.

**Agal Islamma on present as feacil coliforms*

**Suppressible concentration limits / 100 percentile concentration limits

**Table 100 percentile concentration limits

Market Ma			Sni	owy Hydro 2.0 Main Works	F		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_		_	_	_	_		_	_		_	_	_		_
Mode of the property of the pr	Month	ly EPL Sampli	ing: 01-31 Jan	nuary 2025 - Surface Water																																			07122
Part Column Col	Analyte	Unit		Water Quality Objective Value*																																			
Marie Material Marie 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	field				A311/25	AR105	A81/25	4891/05	A89/25 A7	1/25 4/06	25 4/01/2	S 1406/25	12/01/25	12/01/25	18/01/25	18/01/25	18/81/25	18/01/25	18/01/25	26/01/25	26/01/25	11/01/25	Dry	flex	Box	Dev	Bry	11/01/25	One	Dev	Dev	12/01/25	17/01/25	17/1/25	11/1/25	One	Dev	fire	One
March Marc				454	8.16	7.72	7.78	7.06	8.01	42 7.6	8.28	7.68	7.53	7.81	7.36	7.13	7.32	7.67	7.36	6.96	7.01	8.58	Dry	Dry	Dry	Dry	Dry	8.33	Dry	Dry	Dry	9.34	8.33	2.44	8.45	Dy	Dry	Dry	Dry
March State	Bertried Confestivity	e65m		10.190	136	118	346	343	138	35 13	140	1220	42	42	30	28	28	30	28	10	53	1350	Dry	Day	Dry	Dry	Dry	1443	City	Dry	Dry	330	138	670	1150	Dry	Dry	Dry	Dry
Marine M				No Water Coulty Chinesian Value	343	163	364	353	353	79 17	97	70	358	192	206	212	206	203	105	162	185	-35	Dry	Dry	One	Dry	Dry	151	One	Dry	Dry	38	88	88	10	Dry	Dev	Dry	Dry
Marchanness					22.63	18.51	21.35	21.66	10.66	20.6	1 22.21	18.52	12.65	11.12	12.32	12.17	14.26	12.98	12.09	21	26.32	25.56	Dry	Dry	Dry	Dry	Dry	20.10	One	Dry	Dry	14.62	15.71	11.42	23.1	Dry	Dev	Dry	One
March Marc		Non-			86.5	84.7	85.7	85.7	97.1	3.0 84	73.9	51.1	514	52.2	85.6	83	80.6	93.6	565	69.1	71.6	96.6				Dry	Bry	69.1	One	Dry	Dry	29.1	77.6	78.9	100.8		Dev		Ory
Part			-		0.54	2	5.7	22	0.5	10 11	1.2	0.4	1.7	124	15.4	0	52				38.5	17.6					Bry	863	One	Dry	Dry	150		80	15.1		Dev		Ony
Column C			_		0.54	-		12			- 12	- 11		72.4	125	_	- 22	_		7.0	20.7	17.00	64	117		64	- 07	817	01	sey.	to y	100	75.5	80	123	- 01	- Ory	64	- 10
Part	155		5		+5					6 6	- 6												Dry	Bry	Ony	Dry	Ory	332	Gry	Dry	Ory						Dry		Ory
Marie Mari	Hardness as CaCOS	mg/L	1	No Water Quality Objective Value	71	62	77	72	72	71 73	71	332	18	18	16	13	9	11	13	20	20	155	Dry	Dry	Day	Dry	Dry	21	Ciry	Dry	Dry	90	188	243	327	Dry	Dry	Dry	Ciry
Main						_	_	_				_	_	_	_		_	_						_					_										
March Marc			10		+10		+10		10																		Ory		Gry										Ory
March Marc			- 10		- 22		79		-																		Dry		Dry										Dry
Section Sect							700			100 10	1000												07	try try			97	7,600	- 07	Day .	(ivy					- 07	- Day	Dry .	07
Part			1		4	- 6	- 5	4	4	1 1	1 1	2	4	- 6	- 6	5		2	1	7	9	2	Dry	Dry	Bry	Dry	Dry	25	One	Dry	Dry	11	2	5	- 5	Dry	Dry	Dry	One
Composition	Phosphorus (Total)	MEL	10	20	120	10	10	30	10	10 10	30	30	40	12	40	40	80	72	80	30	20	42	Dry	Dry	Dry	Dry	Dry	330	Dry	Div	Dry	70	80	100	20	Dy	Div	Dry	Dry
Composition	Inorganics																																						\neg
Fig. 1	Cyanide Total	NE [®]	4	4	48	-66	- 68	-66	46	46 46	- 66	46	-66	- et	-46	46	- 68	-68	44	- et	- 66	4	Dry	Dry	Dry	Dry	Dry	44	Dry	Dry	Dry	46	44	-68	-66	Dy	Dry	Dry	Dry
Main																																							
Properties Pro		mg/L	- 1	,	<1.0	<1.0	41.0	43.0	4.0	1.0 (1)	4.0	6.8	43.0	41.0	41.0	41.0	41.0	4.0	<1.0	<1.0	<1.0	410	Dry	Dry	Dry	Dry	Dry	0.0	Dry	Dry	Dry	41.0	41.0	41.0	418	Dy	Dry	Dy	Dry
Marie Mari					\vdash			_	_	_	_				_							_				-		_	_	_		_		_				_	_
Mark					_		-	-			-	-	-	-	-	-	-	-	-	-	-			Dity			-	-	-	-	-	-	-			-	-	-	Dec.
Non-Hermine March 1 1 1 1 1 1 1 1 1					-13	- 4	-15	-6	-6	4 4	- 6		-	7	30	- 13	22	21	22	20	54			Dry			Gry	59	Ciry	Dry	Ciry	13	- 61	55	- "	Dry	Day	Dry	Dry
Principal Art 1 November Service 1 1 1 1 1 1 1 1 1								0.1			01	40.7	40.7	-01	-01	40.7	0.1	40.7	42.2					Day.	200		- Day	***	- Day	- Day	Dec	16	- 11	14	2.1	Dir.	Dec	Dir.	Dec
Together Mark 15 Note the distribution real 15 Note the distri				No Water Quality Objective Value	-	-	-	-			-	-	-	-	-	-		-		-	-		Dry	Dry	0ny	Dry		-	-	-					-			-	-
## 15 15 15 15 15 15 15 15	Chromium (H+VI) (dissolved)	MEX	0.2	0.01	-0.2	40.2	-0.2	-0.2	-0.2	0.2 <0.	40.2	102	0.3	0.1	10.2	40.2	-0.2	4D.2	10.2	<0.2	-0.2	1.5	Dry	Dry	Dry	Dry	Dry	11.1	Dry	Div	Dry	12.2	4.3	163	2.5	Div	Div	Dry	Dry
Second S	Copper (total)	Jan A	0.5	No Water Quality Objective Value				-							-			-		-		0.7	Ory	Bry	By			-			-	-		-	-			-	-
			0.5	1	43.5	10.5	43.5	40.3	43 .	0.5 (8)	40.5	49.3	10.3	-0.5	+0.5	483	-0.5	+0.5	42.5	49.5	44.5			Dry			Dry	1.3	Dry	Dry	Dry	40.5	0.8	1.2	49.5	Dry	Dry	Dry	Dry
			2									-			-									Bry				-				-		-					
			0.1		4	11	7		4	3 6	-	· a	6.7	50	6.3	- 64	242	180	182	116	380	41	Dry	Dry	Boy	Dry	Dry	17	Dry	Dry	Dry	2	- a	a	- 0	Dy	Dry	Dry	Dry
				No Water Quality Objective Value	-	-	-	-			-	1	-	-			-										-	-	-	-	-				+61	-	-	-	Dec
Management (Math) Math) Management (Math) Management (Math) Math) Management (Math) Manageme				No. of Street, Co., Co., Co., Co., Co., Co., Co., Co.	10.1	10.1	10.1		10.1	0.1 10.	10.1	10.0	10.1	10.1	10.4	10.0	10.1	101.0	10.1	10.0	10.1		- City	ury			ury	190.4	un	usy	Lity	90.1	10.1	10.4	-0.1	un	usy	uy	Lift
					1	44	1.4	40			1	200			43		111	40	5.7	37.0	- 11		200	200	-		- Day	101	Dir.	Day	Do	16		- 11	6.9	Dir.	- Day	Div.	Die
Marie Mari					-	1 1	1 1	- "	-		1 "	-	1 1	-			1 1		- 1	-	- 1				Day .		- 1	-	-	-7						-	-7		-
Note (Section 1988) 1 1 43 43 43 43 43 43 43 43 43 43 43 43 43			0.3		40.5	40.5	-0.5	40.3	-0.5	0.3 <0.	193	2.4	10.3	-0.5	10.3	483	-0.3	40.5	10.3	403	-0.5	40.5	Div	Dry	Div	Dry	Dry	0.6	Dry	Div	Dry	10.3	0.9	0.9	2.2	Div	Div	Div	Dry
Shee Seleck) page 0.55 No Water Quality Objective Value	Silver (total)	Jan A	0.64	No Water Quality Objective Value											-			-		-		49.00	Ory	Bry	By				-		-	-		-	-			-	-
			33.0		40.00	40.01	40.00	40.01	40.03 4	40.0	1 4011	<0.01	40.01	40.00	4001	<0.01	40.81	-0.01	40.00	<0.01	40.03	43.0 0					Dry	4001	Dry	Dry	Dry	40.03	40.01	40.03	+0.01	Dry	Dry	Dry	Dry
Best (Market) Mag R 1 No Water Quality Objective Value					_	-				- [-	1	1 -	-	-			-	-				-																	
	Zinc (dasoberd)	pg/L	1	2.4	43	- 4	- 63	- 6	44	6 6	- 6	10	- 6	- 6	-0.	- 6	- 6	-6	- 4	5	- 6	1	Dry	Dry	Dry	Dry	Dry	-0	Dry	Dry	Dry	41	- 4	- 4	- 6	Dry	Dry	Dry	Dry

Monthly EPL Sampling: 01-31 January 2025 - Discharge Water

Analyte	Unit	Limit of Reporting	Water Quality Objective Value*
Flow Rate			
Inflow*	ML/day	-	•
Outflow*	ML/day	-	4.32 (EPL 43 / 50)
Field			
рН	pH Unit	-	6.5-8.5
Electrical Conductivity	μS/cm	-	700 (EPL 41) / 200 (EPL 50)
Oxidation Reduction Potential	mV	-	No Water Quality Objective Value
Temperature	°C	-	15
Dissolved Oxygen	% saturation	-	No Water Quality Objective Value
Turbidity	NTU	-	<25
aboratory analytes			
Total suspended solids	mg/L	5	5/10
Hardness as CaCO ₃ (filtered)	mg/L	1	No Water Quality Objective Value
Nutrients			
Ammonia as N	μg/L	10	200/2000^
Nitrite + Nitrate as N (NOx)	μg/L	10	10
Kjeldahl Nitrogen Total	μg/L	100	No Water Quality Objective Value
Nitrogen (Total)	μg/L	100	350/-^
Reactive Phosphorus	μg/L	1	No Water Quality Objective Value
Phosphorus (Total)	μg/L	10	100/300^
norganics			
Cyanide Total	μg/L	4	No Water Quality Objective Value
Hydrocarbons			
Oil and Grease	mg/L	1	2/5^
Metals			
Aluminium (dissolved)	μg/L	5	55
Arsenic (dissolved)	μg/L	0.2	13
Chromium (III+VI) (dissolved)	µg/L	0.2	1
Copper (dissolved)	µg/L	0.5	14
Iron (dissolved)	µg/L	2	300
Lead (dissolved)	μg/L	0.1	3.4
Manganese (dissolved)	μg/L	0.5	1,900
Nickel (dissolved)	µg/L	0.5	11
Silver (dissolved)	μg/L	0.01	0.05
Zinc (dissolved)	μg/L	1	8
Biological			
Faecal Coliforms	CFU/100mL	1	10/100^
Biological Oxygen Demand	mg/L	2	5
		v	

EPL 41	EPL 43	EPL 44	EPL 45	EPL 47	EPL 48	EPL 49	EPL 50
22/01/2025							22/01/20
-	0.0000	0.3858	0.0478	0.2103	0.0889	0.7156	-
-	-	-	-	-	-		-
6.92	-	-	-	-	-	-	7.44
161	-	-	-	-	-	-	60.7
170	-	-	-	-	-	-	176.5
25.46	-	-	-	-	-	-	20.4
63.1	-	-	-	-	-		87.2
20	-	-	-	-	-	-	22.49
<5	-	-	-	-	-	-	<5
<1	-	-	-	-	-	-	<1
		-		•			•
3,030	-	-	-	-	-	-	200
310	-		-	-	-	-	220
5,200	-	-	-	-	-	-	600
5,500	-	-	-	-	-	-	800
<1	_		-	-	-	-	<1
10	-	-	-	-	-	-	20
			•	•			<u> </u>
<4	-	-	-	-	-	-	<4
					1		
<1.0			-	-	-		<1.0
6	-		-		-		<5
<0.2			-	-		-	<0.2
<0.2			-	-			<0.2
<0.5			-	-	-		<0.5
<2			-	-	-	-	<2
<0.1			-	-	-	-	<0.1
<0.5			-	-			1.1
<0.5			-	-	-	-	<0.5
<0.01			-	- :	- :	-:-	<0.01
<1			-	-	-	-	1
<1	-						<1
<2			-			-:-	<2

- Note: Treated water was not being discharged at Talbingo Reservoir at the time of EPL sampling.

 There is no 100th percentile limit for Nitrogen (Total).

 * Water Quality Objective values Treated Water reference the predicted values for physical and chemical stressors from the treatment plant as presented in the Main Works EIS.

 Samples not required

 * 90 Percentile concentration limit/100 Percentile limit

 # Inflows to STP and CWTP do not directly correspond to outflow at RO as much of the water is reused on site

Snowy Hydro 2.0 Main Works Monthly EPL Sampling: 01-31 January 2025 - Volumes

Date
1/01/2025
2/01/2025
3/01/2025
4/01/2025
5/01/2025
6/01/2025
7/01/2025
8/01/2025
9/01/2025
10/01/2025
11/01/2025
12/01/2025
13/01/2025
14/01/2025
15/01/2025
16/01/2025
17/01/2025
18/01/2025
19/01/2025
20/01/2025
21/01/2025
22/01/2025
23/01/2025
24/01/2025
25/01/2025
26/01/2025
27/01/2025
28/01/2025
29/01/2025
30/01/2025
31/01/2025

EPL 43 *	EPL 50 ^
	e volume alitres)
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
	-
-	-
	-
	-
	-
	-
	-
	-
	-
	-
-	-
-	-
-	-
-	-
-	-
-	-

EPL 44	EPL 45	EPL 47	EPL 48	EPL 49
	Discharg	e volume (M	egalitres)	
0.40	0.04	0.15	0.05	0.62
0.43	0.03	0.15	0.07	0.85
0.62	0.04	0.18	0.06	0.62
0.47	0.05	0.16	0.07	0.89
0.29	0.01	0.18	0.07	0.72
0.51	0.04	0.19	0.08	0.52
0.27	0.05	0.13	0.06	0.69
0.57	0.03	0.32	0.07	0.42
0.37	0.05	0.14	0.06	0.85
0.72	0.07	0.17	0.07	0.60
0.28	0.05	0.20	0.07	0.55
0.34	0.05	0.24	0.08	0.54
0.54	0.05	0.20	0.09	0.71
0.40	0.05	0.34	0.08	0.90
0.61	0.08	0.19	0.18	0.86
0.49	0.01	0.23	0.18	0.65
0.67	0.05	0.19	0.08	0.63
0.58	0.04	0.15	0.08	0.72
0.65	0.06	0.21	0.07	0.57
0.26	0.07	0.23	0.08	0.63
0.19	0.06	0.21	0.18	0.75
0.17	0.05	0.20	0.01	0.79
0.31	0.07	0.28	0.09	0.94
0.06	0.04	0.16	0.07	0.72
0.27	0.05	0.22	0.08	0.82
0.17	0.05	0.22	0.09	0.90
0.20	0.04	0.21	0.08	0.70
0.19	0.04	0.19	0.18	0.60
0.19	0.05	0.23	0.08	0.65
0.10	0.04	0.25	0.08	0.61
0.28	0.05	0.18	0.08	0.45

Note: The EPL discharge volume limit for EPL 43 and 50 is 4.32 megalitres per day. Compliance with this criteria was met during the reporting month.

- * The maximum flow rate capacity for Lobs Hole STP/PWTP during the reporting month was 7.18 L/s
- ^ The maximum flow rate capacity for Tantangara STP/PWTP during the reporting month was 9.84 L/s
- -- Water not discharged on this day

⁻ Water not discharged on this day

Table 1 - Surface Water 0						Water Confe	v Objectives (see no				1	
River and Minor Waterco			Temp (°C)	DO (%)	DO (mg/L)	EC (µS/cm)		pH	Redox (mV)	Turbidity (NTU)		
				90 - 110		30 - 350		65-80		2 - 25	J	
Date and Time	EPL Site ID	Location Description	Temp (°C)	DO (%)	DO (mg/t)	EC (µS/cm)	TDS (mg/L)	pH	Redox (mV)	Turbidity (NTU)	Field Comments	Context
2/2/2025, 7:41 am	EPLS	Yarrangobiliy River, upstream of the exploratory tunnel and construction pad	19.83	79.9	7.28	163	106	7.45	267	3.9	Clear sunny day. Lower water level and low rainfall in the last 2 weeks.	This sample point is upstream of works and is therefore representative of background conditions.
11/2/2025, 3:51 pm	EPL6	Wallaces Creek, upstream of Yarrangobilly River and Wallaces Creek confluence	22.46	67.7	5.86	116	76	8.46	38	68.4	Overcast day. High rainfall over the past few days.	This sample point is upstream of works and is therefore representative of background conditions.
2/2/2025, 9:15 am	EPLB	Yarrangobilly River, downstream of Lick Hole Gully	21.2	67.8	6.01	169	110	8.38	206	0.3	Clear sunny day. Lower water level and low rainfall in the last 2 weeks.	Low DO and elevated pH align with results upstream of works and reduced flow.
2/2/2025, 9:41 am	EPL9	Yarrangobily River, downstream of the accommodation camp and upstream of Talbingo Reservoir	21.23	79.3	7.03	165	107	8.22	212	4.2	Clear sunny day. Lower water level and low rainfall in the last 2 weeks.	Low DO and elevated pH align with results upstream of works and reduced flow.
2/2/2025, 7:59 am	EPL12	Yarrangobilly River, immediately downstream of portal pad	19.61	74.3	6.81	163	106	7.07	288	3.1	Clear sunny day. Lower water level and low rainfall in the last 2 weeks.	Low DO aligns with reults upstream of works and reduced flow.
2/2/2025, 8:44 am	EPL14	Yarrangobilly River, downstream of road construction areas	20.25	75.3	6.81	163	106	7.94	232	2.4	Clear sunny day. Lower water level and low rainfall in the last 2 weeks.	Low DO aligns with reults upstream of works and reduced flow.
2/2/2025, 8:56 am	EPL15	Yarrangobilly River, downstream of road construction areas	20.92	66.5	5.93	162	106	8.27	213	6	Clear sunny day. Lower water level and low rainfall in the last 2 weeks.	Low DO and elevated pH align with the historical data recorded for this location in February 2025, especially with reduced flow velocity.
2/2/2025, 10:05 am	EPL16	Yarrangobilly River, downstream of road construction areas	22.62	77.4	6.69	165	107	8.53	199	0.4	Clear sunny day. Lower water level and low rainfall in the last 2 weeks.	Low DO and elevated pH align with the historical data recorded for this location in February 2025, especially with reduced flow velocity.
19/2/2025, 8:06 am	EPL24	Yarrangobilly River unmamed tributary, downslope of GF01	14.66	75.5	7.66	607	389	7.17	178	33.6	Sunny day, low flow, clear water	Low DOand high EC can be attributed to low flow, stagnant water. Location will continue to be monitored closely.
7/2/2025, 12:15 pm	EPL26	Eucumbene River downstream of Marica Road	22.71	77.4	6.68	38	25	8.1	161	12	Clear sunny day. Low water level, very low flow. Horse sign in creek bed.	Low DO and elevated pH align with the baseline data and remain with the upstream conditions for February 2025.
7/2/2025, 12:03 pm	EPL27	Eucumbene River upstream of Marica Road	20.38	75.2	6.79	40	26	8.31	148	5.3	Clear sunny day. Low water level, very low flow.	This sample point is upstream of works and is therefore representative of background conditions.
1/2/2025, 10:06 am	EPL30	Kellys Plain Creek, downstream of accommodation camp and laydown areas	16.93	84.3	8.15	33	22	7.89	212	0	Clear, low flow, sunny day, no algal growth	This sample point is upstream of works and is, therefore, representative of background conditions. Turbidity at these sites is very low, as expected in low impact waterways. Likely between 0.1 and 1 NTU. Due to resolution of the Horiba and minor calibration drift ONTU was recorded.
1/2/2025, 10:21 am	EPL31	Kellys Plain Creek, upstream of accommodation camp and laydown areas	17.42	86.4	8.28	28	18	7.66	219	0	Clear, no odours, low flow, sunny day, no algal growth	This sample point is uptream of works and is, therefore, representative of background conditions. Turbidity at these sites is very low, as expected in low impact waterways. Likely between 0.1 and 1 NTU. Due to resolution of the Horiba and minor calibration drift ONTU was recorded.
1/2/2025, 9:40 am	EPL33	Murrumbidgee River, downstream of Tantangara reservoir outlet	20.73	86.7	7.76	26	17	7.36	241	10.6	Slightly turbid, sunny, no odours	Low DO and EC aligns directly with reults upstream of works.
1/2/2025, 9:06 am	EPL34	Nungar Creek, upstream of Tantangara Road	16.62	98.1	9.56	40	26	7.69	222	0	Clear, no odours, low flow, minor algal growth, sunny	This sample point is upstream of works and is, therefore, representative of background conditions.
1/2/2025, 9:13 am	EPL35	Nungar Creek, downstream of Tantangara Road	16.42	94	9.19	39	26	7.57	225	0	Clear, minor algal growth, no odours, low flow, sunny	Turbidity at these sites is very low, as expected in low impact waterways. Likely between 0.1 and 1 NTU. Due to resolution of the Horiba and minor calibration drift 0.0NTU was recorded.
4/2/2025, 12:39 pm	EPL 36	Camerons Creek, upstream of works in Rock Forest	22.57	68.6	5.93	51	33	7.73	115	14	Clear sunny day. New road being built nearby. Very low water level and low flow.	This sample point is upstream of works and is therefore representative of background conditions.
4/2/2025, 11:59 am	EPL 37	Camerons Creek, downstream of works in Rock Forest	24.93	71.9	5.95	58	38	7.93	161	23.8	Clear sunny day. Very low water level. Water not flowing.	Low DO can be attributed to low flow and seasonal changes in February 2025, however, the ranges remain with the historical data.
3/2/2025, 9:41 am	EPL52	GFO1 leachate basin	24.91	78.9	6.51	1,380.00	880	9.18	178	16	Basin is lower than usual. Green like colour, a fair bit of algael growth throughout basin. Non turbid. No sheen Clear, sunny day. No recent rain events.	High EC an low DO are expected within the leachate storage infrastructure.
Dry	EPLS3	GF01 surface water upstream east	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	
17/2/2025, 1:22 pm	EPLS4 EPLSS	GF01 surface water upstream west GF01 surface water downstream	Dry 19.6	Dry 68.5	6.25	1,220.00	782	7.01	Dry 142	Dry 12.3	Dry Sunny day, high flow, clean water, no odour	High EC and low DO can be attributed to the recent rainfall events before sampling. High EC may be attributed to water source and approximate Project works.
-	EPL67	Nungar Creek surface water downstream west from Tantangara emplacement area	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	approximate Project works.
-	EPL71	Surface water downstream of Marica emplacement	-	-	-	-	-		-	-	This lication has been removed and waiting for re locate it	
15/2/2025, 10:17 am	EPL84	F8 Basin	20.64	74.4	6.67	441	287	8.65	164	1000	Highly turbid, recent heavy rain, no odours detected,	Low DO and elevated EC and turbidity due to runoff accumulating in the sediment basin. Water was taken for treatment at the process water treatment plant or re-use where parameters where met.
15/2/2025, 10:33 am	EPLBS	MYO7 Basin	19.7	52.5	4.8	461	300	9.24	143	1000	Highly turbid, no odours detected, recent heavy rain	High EC with elevated turbidity and low DO are expected within the leachate storage infrastructure and the rainfall events during this period.
15/2/2025, 11:14 am	EPL86	LHGO1 Basin	21.13	74.8	6.63	899	576	8.45	-28	507	Turbid, no odours detected, water recently transferred to LHG basin from MHD7	High EC with elevated turbidity and low DO are expected within the leachate storage infrastructure and the rainfall events during this period.
	EPL98	Rock blanket diversion monitoring under GFO1 liner	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	-
15/2/2025, 10:45 am	EPL99	Marica Leachete Basin-Turkey's Nest	16.14	66.6	6.54	265	172	8.98	47	41.3	sunny day, turbid water, no odour	Elevated turbidity and low DO are expected within the leachate storage infrastructure and the rainfall events during this period.
15/2/2025, 11:01 am	EPL100	Marica Lower Leachate Basin USS Shaft	16.96	67.5	6.52	587	376	8.44	89	81.5	sunny day, turbid water, no odour	Low DO with elevated EC and turbidity can be attributed to the runoff accumulating in the sediment basin. Water was taken for treatment at the process water treatment plant or re-use where parameters

EPL 21266 In Situ W EPL Monthly Monitoria		easurements .										
15/2/2025, 10:52 am		Marica Leachate Basin Spoil Pad	16.06	66.9	6.59	362	235	8.86	65	206	sunny day, turbid water, no odour	Low DO with elevated EC and turbidity can be attributed to the runof accumulating in the sediment basin. Water was taken for treatment at the process water treatment plant or re-use where parameters where met.
8/2/2025, 9:17 am	EPL106	Ravine Bay Leachate basin 1	25.78	74.3	6.03	1,270.00	816	8.67	95	45.6	Dark green colour, birds present, film present, no odour	Elevated turbidity with high EC and low DO are expected within the leachate storage infrastructure and the rainfall events during this period.
18/2/2025, 11:43 am	EPL110	Upstream monitoring of Ravine Bay emplacement area	13.87	95.8	9.9	67	44	7.54	140	44	Clear flow, no odour, heavy rainfall within S days	All reading are within WQO limits.
-	EPL118	Ravine Bay Leachate basin 2	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	-
-	EPL120	Ravine Bay Leachate basin 4	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	
19/2/2025, 8:27 am	EPL122	GFO1 Drainage Line (Formerly EPL SSb)	14.06	64.1	6.58	778	498	7.79	173	206	Sunny day, low flow, clear water	Low DO and high EC with turbidity can be attributed to low flow, stagnant water. Location will continue to be monitored closely.

	February 2025											
Table 2 - Reservoir Water C Tolbingo and Tentangora I			Temp (°C)	DO (%)	DO (mg/L)	Water Quality EC (µS/cm)	Objectives (see no TDS (mg/L)	te 2) pH	Redox (mV)	Turbidity (NTU)		
				90 - 110		20 - 30		6.5 - 8.0		1-20	1	
Date and Time	EPL Site ID	Location Description	Temp (°C)	DO (%)	DO (mg/L)	EC (µS/cm)	TDS (mg/L)	pН	Redox (mV)	Turbidity (NTU)	Field Comments	Context
26/2/2025, 8:16 am	EPL10	Talkingo Reservoir, downstream of road works and upstream of water intake point	23.52	75.4	6.41	78	51	8.12	205	0.5	Horiba S not ysl 1 No wind, clear day	Elevated water temperatures were considered to influence all reported results for this location. Warmer temperatures within the shallower location are considered to influence the lower OD and elevated EC. Low NTU results may have resulted from the lack of water movement florulding the absence of wind influences) and the green discolouration observed.
26/2/2025, 8:05 am	EPL11	Talkingo Reservoir, downstream of outlet	23.15	69.2	5.92	56	36	7.93	209	o	Mortius 5 not yo I No wind, sunny day	Elevated water temperatures, reduced water movement and the green discolouration within the water body are consistent with organic matter presence during the time of sampling and are considered to effect the conditions recorded at the time of sampling.
9/2/2025, 8:43 am	EPL28	Tantangara Reservoir, upstream of works in the mouth of the Murrumbidgee River	21.2	56.9	5.05	28	18	8.07	225	13	Early morning fog. 5mm overnight rain. Turning to sunny.	Low DO and elevated pH can be attributed to low reservoir levels in preparation for intake works and notably surfaces temperatures incresed.
9/2/2025, 9:12 am	EPL29	Tantangara Reservoir, downstream of works area and upstream of lower Murrumbidgee River	22.5	58.3	5.05	26	17	8.16	227	9.3	Early morning fog turning to sunny. No odour or sign of discolouration. Smm rain overnight	Low DO and elevated pH can be attributed to low reservoir levels in preparation for intake works and notably surfaces temperatures incresed.
9/2/2025, 9:01 am	EPL32	Tantangara Reservoir, Tantangara Intake. Downstream of construction works	22.4	65.2	5.66	26	17	8.1	230	9	Early morning fog turning to sunny. No odour or sign of discolouration. Smm rain overnight	Low DO and elevated pH can be attributed to low reservoir levels in preparation for intake works and increased water temperatures.
1/2/2025, 1:14 pm	EPL38	Tantangara Reservoir, variable location dependant on tide and reservoir levels. Between the emplacement area and the ancillary facilities for emplacement activities	26.22	78.4	6.34	28	18	8.95	101	10.3	Visually clear, no odours, no algal growth, sunny	Low DO and elevated pH is thought to result from the very low water level and the corresponding inflow fluctuations.
1/2/2025, 11:49 am	EPL39	Confluence of Nungar Creek and Tantangara Reservoir, variable location dependent on tide and reservoir levels. Upstream of Tantangara construction works	22.65	91.5	7.9	30	19	6.66	233	18.7	Slightly turbid, low flow, sunty day,	All reading are within WQO limits.
9/2/2025, 9:19 am	EPL40	Confluence of the upper Murrumbidgee River and Tantangara Reservoir, variable location dependent on tide and reservoir levels. Upstream of works	19.9	88.4	8.06	30.9	22	7.56	168	5.16	Clear, flowing shallow water. No odour or sheen. Sunny moming with minimal wind. Post rain event last night. Small collections of white bubbles seen on the surface. Water level too low for boat access.	Marginally higher EC and lower DO are understood to have been potentially influenced by the shallow sample collection point and the proximity to the bank.
9/2/2025, 9:29 am	EPL 46	Tantangara Reservoir, diffuser outlet discharging into Tantangara Reservoir from Tantangara STP/PWTP	22.61	62.9	5.43	27	17	8.21	220	8	Early morning fog turning to sunny. No odour or sign of discolouration. 5mm rain overnight	Low DO and elevated pH can be attributed to low reservoir levels in preparation for intake works and elevated temperatures.
9/2/2025, 9:18 am	EPL 51	Tantangara Reservoir, downstream of Tantangara STP/PWTP diffuser outlet	22.65	57.5	4.97	27	17	8.18	-86	9.1	Early morning fog turning to sunny. No odour or sign of discolouration. Smm rain overnight	Low DO and elevated pH can be attributed to low reservoir levels in preparation for intake works and elevated temperatures.
26/2/2025, 7:50 am	EPL107	Upstream monitoring of Ravine Bay emplacement area within Yarrangobilly River	22.16	ω	6.02	34	22	7.64	221	o	Horiba 5 not ysl 1 Slight breeze sunny day	Elevated EC and low DO are consistent with background conditions for this water body in dummer. Turbidity at these sites is very low_likely between 0.1 and 1 NTU.
26/2/2025, 7:38 am	EPL108	Monitoring of Ravine Bay emplacement area (center of PSE) within Yarrangobilly River	21.74	82.8	7.28	32	21	7.69	204	0	Slight breeze, clear day.	Elevated EC and low DO are consistent with background conditions for this water body in duminer. Turbidity at these sites is very low Likely between 0.1 and 1 NTU.
26/2/2025, 7:30 am	EPL109	Upstream monitoring of Ravine Bay emplacement area within Yarrangobiliy River	21.52	80	7.06	31	20	7.89	151	23.5	Not much wind, sunny day. Weather has been good the past couple of days.	Marginally elevated EC and low DO align with the background conditions for Yarrangovilly river in February 2025. High turbidity can be attributted to the dicreased in the water level.
Table 3 - Treated Water Qu	uality Data						Objectives (see no				1	
Talbingo			Temp ("C)	DO (%)	DO (mg/L)	EC (µS/cm) 700	TDS (mg/L)	pH 6.5 - 8.0	Redox (mV)	Turbidity (NTU) 25	1	
Date and Time E	EPL Site ID	Location Description	Temp ("C)	DO (%)	DO (mg/L)	EC (µS/cm)	TDS (mg/L)	pН	Redox (mV)	Turbidity (NTU)	Field Comments	Context
2/2/2025, 9:50 am	EPL41	Lobs Hole STP/PWTP Final Effluent Quality Monitoring Point. Downstream of final treatment, prior to discharge to Taibingo Reservoir.	26.69	66.3	5.28	2,210.00	1,410.00	8.32	203	9.9	Visually clear - likely turbidity probe error, no odours	This location has been monitored twice a week, however, non discharge occurred in this period and has followed the re-use criteria when applicable.

EPL 21266 In Situ W EPL Monthly Monitoria	ng February 2025	<u>easurements</u>									_	
Table 2 - Reservoir Wate	r Quality Data				6:	Water Quality	Objectives (see no	te 2)				
Talbingo and Tantangar	o Reservoirs		Temp (°C)	90 - 110	DO (mg/L)	EC (μS/cm) 20 - 30	TDS (mg/L)	65-80	Redox (mV)	Turbidity (NTU) 1 - 20		
				20 110		1 20 20		0.5 0.0		•		
Date and Time	EPL Site ID	Location Description	Temp (°C)	DO (%)	DO (mg/L)	EC (µS/cm)	TDS (mg/L)	pН	Redox (mV)	Turbidity (NTU)	Field Comments	Context
26/2/2025, 8:16 sm	EPL10	Talbingo Reservoir, downstream of road works and upstream of water intake point	23.52	75.4	6.41	78	51	8.12	205	0.5	Moribu S not yei 1 No wind, clear day	Elevated water temperatures were considered to influence all reported results for this focation. Warmer temperatures within the shallower location are considered to influence the lower DD and elevated EC. Low NTU results may have resulted from the lack of water movement (including the absence of wind influences) and the green discoluration observed.
26/2/2025, 8:05 am	EPL11	Talbingo Reservoir, downstream of outlet	23.15	69.2	5.92	56	36	7.93	209	۰	Moriba 5 not yol 1 No wind, surnry day	Elevated water temperatures, reduced water movement and the green discolouration within the water body are consistent with organic matter presence during the time of sampling and are considered to effect the conditions recorded at the time of sampling and are considered to effect the
9/2/2025, 8:43 am	EPL28	Yantangara Reservoir, upstream of works in the mouth of the Murrumbidgee River	21.2	56.9	5.05	28	18	8.07	225	13	Early morning fog. 5mm overnight rain. Turning to sunny.	Low DO and elevated pM can be attributed to low reservoir levels in preparation for intake works and notably surfaces temperatures increased.
9/2/2025, 9:12 am	EPL29	Tantangara Reservoir, downstream of works area and upstream of lower Murrumbidgee River	22.5	58.3	5.05	26	17	8.16	227	9.3	Early morning fog turning to sunny. No odour or sign of discolouration. 5mm rain overnight	Low DO and elevated pH can be attributed to low reservoir levels in preparation for intake works and notably surfaces temperatures incresed.
9/2/2025, 9:01 am	EPL32	Tantangara Reservoir, Tantangara Intake. Downstream of construction works	22.4	65.2	5.66	26	17	8.1	230	9	Early morning fog turning to sunny. No odour or sign of discolouration. 5mm rain overnight	Low DO and elevated pH can be attributed to low reservoir levels in preparation for intake works and increased water temperatures.
1/2/2025, 1:14 pm	EPL38	Tantangara Reservoir, variable location dependant on tide and reservoir levels. Between the emplacement area and the ancillary facilities for emplacement activities	26.22	78.4	6.34	28	18	8.95	101	10.3	Visually clear, no odours, no algal growth, sunny	Low DO and elevated pH is thought to result from the very low water level and the corresponding inflow fluctuations.
1/2/2025, 11:49 am	EPL39	Confluence of Nungar Creek and Tantangara Reservoir, variable location dependent on tide and reservoir levels. Upstream of Tantangara construction works	22.65	91.5	7.9	30	19	6.66	233	18.7	Slightly turbid, low flow, sunny day,	All reading are within WQO limits.
9/2/2025, 9:19 am	EPL40	Confluence of the upper Murrumbidgee River and Tantangara Reservoir, variable location dependent on tide and reservoir levels. Upstream of works	19.9	88.4	8.06	30.9	22	7.56	168	5.16	Clear, flowing shallow water. No odour or sheen, Sunny morning with minimal wind. Post rain event last night. Small collections of white bubbles seen on the surface. Water level too low for boat access.	Marginally higher EC and lower DO are understood to have been potentially influenced by the shallow sample collection point and the proximity to the bank.
9/2/2025, 9:29 am	EPL 46	Tantangara Reservoir, diffuser outlet discharging into Tantangara Reservoir from Tantangara STP/PWTP	22.61	62.9	5.43	27	17	8.21	220	8	Early morning fog turning to sunny. No odour or sign of discolouration. 5mm rain overnight	Low DO and elevated pH can be attributed to low reservoir levels in preparation for intake works and elevated temperatures.
9/2/2025, 9:18 am	EPL 51	Tantangara Reservoir, downstream of Tantangara STP/PWTP diffuser outlet	22.65	57.5	4.97	27	17	8.18	-06	9.1	Early morning flog turning to sunny. No odour or sign of discolouration. 5mm rain overnight	Low DO and elevated pH can be attributed to low reservoir levels in preparation for intake works and elevated temperatures.
26/2/2025, 7:50 am	EPL107	Upstream monitoring of Ravine Bay emplacement area within Yarrangobilly River	22.16	69	6.02	34	22	7.64	221	0	Horiba S not yai 1 Slight breeze sunny day	Elevated EC and low DO are consistent with background conditions for this water body in dummer. Turbidity at these sites is very low. Likely between 0.1 and 1 NTU.
26/2/2025, 7:38 am	EPL108	Monitoring of Ravine Bay emplacement area (center of PSE) within Yarrangobiliy River	21.74	82.8	7.28	32	21	7.69	204	0	Slight breeze, clear day.	Elevated EC and low DO are consistent with background conditions for this water body in dummer. Turbidity at these sites is very low. Likely between 0.1 and 1 NTU.
26/2/2025, 7:30 am	EPL109	Upstream monitoring of Ravine Bay emplacement area within Yarrangobilly River	21.52	80	7.06	31	20	7.89	151	23.5	Not much wind, sunny day. Weather has been good the past couple of days.	Marginally elevated EC and low DO align with the background conditions for Yarrangovilly river in February 2025. High turbidity car be atributted to the dicreased in the water level.
Table 3 - Treated Water	Ounlity Data					Water Quality	Objectives (see no	te 31				
Talbingo	sount with		Temp (°C)	00(%)	DO (mg/t)	EC (μS/cm) 700	TDS (mg/L)	pH 6.5 - 8.0	Redox (mV)	Turbidity (NTU) 25	1	
Date and Time	EPL Site ID	Location Description	Temp (°C)	DO (%)	DO (mg/L)	EC (µS/cm)	TDS (mg/L)	pН	Redox (mV)	Turbidity (NTU)	Field Comments	Context
2/2/2025, 9:50 am	EPL41	Lobs Hole STP/PWTP Final Effluent Quality Monitoring Point. Downstream of final treatment, prior to discharge to Talbingo Reservoir.	26.69	66.3	5.28	2,210.00	1,410.00	8.32	203	9.9	Visually clear - likely turbidity probe error, no odours	This location has been monitored twice a week, however, non discharge occurred in this period and has followed the re-use criteria when applicable.
Table 4 - Treated Water (Duralitus Dana					Water Quality	Objectives (see no	1 - 21				
Tantangara	quanty Data		Temp (*C)	DO (%)	DO (mg/L)	EC (µS/cm) 200	TDS (mg/L)	pH 6.5 - 8.0	Redox (mV)	Turbidity (NTU) 25		
Date and Time	EPL Site ID	Location Description	Temp (°C)	DO (%)	DO (mg/L)	EC (µS/cm)	TDS (mg/L)	pH	Redox (mV)	Turbidity (NTU)	Field Comments	Context
26/2/2025, 10:31 am	EPL50	Tantangara STP/PWTP Final Effluent Quality Monitoring Point. Downstream of final treatment, prior to discharge to Tantangara Reservoir.	19.6	85.7	7.89	10.8	8	5.14	224.5	0.8	Sunny, Samoled inside RO container, Water very clear; no sediment present; no odour or oil present, RO plant has chemical cleaning maintenance 3 days prior to sampling.	This location has been monitored twice a week, however, non discharge occurred in this period and has followed the re-use criteria when applicable.

EPL 21266 In Situ Water Quality Measurements EPL Monthly Monitoring February 2025

Table 5 - Groundwater O						Water Quality	Objectives (see no				I	
GF01 Surface Water and	Groundwater		Temp (°C)	00 (%)	00 (mg/L)	EC (μS/cm) 30 - 350	TDS (mg/L)	pH 6.5 - 8.0	Redox (mV)	Turbidity (NTU)	ł	
Date and Time	EPL Site ID	Location Description	Temp (°C)	DO (%)	DO (mg/L)	EC (µS/cm)	TDS (mg/L)	pH	Redox (mV)	Turbidity (NTU)	Field Comments	Context
7/2/2025, 3:29 pm	EPL1	Wallace Creek Bridge	20.74	17.9	1.61	504	322	6.77	-53	21.9	Clear sunny day. SWL 3.31m	Elevated EC is within the historical range for this location.
16/2/2025, 9:00 am	EPL2	Wallace Creek Bridge	14.62	102.3	10.37	294	752	7.85	-109	294	SWL- 3.8 m, sunny day, turbid water, no odour	All reading are within WQO limits.
11/2/2025, 3:31 pm	EPL4	Portal Access	18.79	16.6	1.54	1,320.00	847	8.59	-95	1,000.00	Bore cap under water. Contaminated with surface water. SWL at surface.	Elevated EC and pH align with the historical range for this location.
11/2/2025, 3:12 pm	EPL25	Portal Access	19.37	29	2.67	506	324	6.58	-57	423	Overcast day, Heavy rainfall last few days.	Elevated EC within the historical range for this location.
10/2/2025, 2:17 pm	EP1.56	GP01 groundwater upstream east	18.84	14.8	1.38	237	154	7.28	135	19.6	Clear sunny afternoon. High rainfall overnight. SWL10.56m	All reading are within WQO limits.
10/2/2025, 2:43 pm	EPL57	GF01 groundwater upstream west	20.89	15.5	1.38	245	159	7.98	119	42.1	Clear sunny afternoon. High rainfall overnight. SWL15.45m	All reading are within WQO limits.
10/2/2025, 3:42 pm	EPL58	GF01 groundwater downstream	20.71	22.1	1.98	1140	730	6.17	136	38.3	SWL: 7.45m. Clear, sunny day. No recent rain events. Water is clear, no odour, no sheen.	Elavated EC is generally consistent with historical range for this location. Low pH will be monitored closely, however borehole pump extraction method is in the process of being upgraded.
8/2/2025, 10:40 am	EPL68	Tantangara groundwater downstream West	15.92	66.8	6.61	30	19	5.85	198	190	Clear sunny day.	Low pH is generally consistent with the historical data for this location. These fall in line with curent seasonal changes.
8/2/2025, 10:17 am	EPL69	Tantangara groundwater downstream East	17.06	60.8	5.87	31	20	6.34	189	40.8	Clear sunny day. SWL 2.37m. New earth works upstream.	Low pH is generally consistent with the historical data for this location. These fall in line with curent seasonal changes.
8/2/2025, 8:46 am	EPL70	Tantangara groundwater upstream	16.31	52.9	5.19	98	64	6.79	183	1000	Clear sunny day. SWL 7.64m. Very turb, greater than 1000ntu.	All reading are within WQO limits.
15/2/2025, 9:36 am	EPL 72	Marica groundwater upstream	11.54	54.6	5.95	71	46	5.76	223	65.8	SWL- 36.04 m, sunny day, turbid water, no odour	This location is upgradient of works and therefore representative of background conditions.
15/2/2025, 10:14 am	EPL73	Marica groundwater downstream	11.56	91.2	9.93	77	50	5.72	230	36.3	SWL-11.96 m, sunny day, turbid water,no odour	The ranges are consistent with the upgradient conditions for February 2025.
3/2/2025, 2:18 pm	EPL80	LHG groundwater upstream	23.55	14.7	1.25	800	512	7.11	-48	92.4	SWL: 20.55m. Very hot afternoon. No recent rain events. Water is slightly turbid with silt	This location is upgradient of works and therefore representative of
3/2/2025, 3:14 pm	EPL81	LHG groundwater downstream	23.56	28.3	2.41	852	546	7.15	-92	1000	settling at the bottom. No odour. SWL-4.5m. Hot afternoon. No recent rain events. Water is clear with dark gray sifty sediment settling at the bottom of the sleeve. No odour. NTU reached 1000NTU.	background conditions. Elevated EC aligns with results upgradient of works.
3/2/2025, 2:36 pm	EPUI2		20.28	20.4	1.83		1730	6.96		53.4	setting at the bottom of the seeve. No oppor. NTO reached 1000NTO. SWE-6-96m. Very hot afternoon. No recent rain events. Water is clear with no odour.	This location is upgradient of works and therefore representative of
3/2/2025, 2:36 pm 3/2/2025, 4:04 pm	EPL82	MY groundwater upstream MY groundwater downstream	20.28	33.9	1.83	2710 506	1730 324	6.22	-51 46	53.4 81.7	SWIL: 3.97m. Hot afternoon. No recent rain events. Water is clear with no odour. SWIL: 3.97m. Hot afternoon. No recent rain events. Water is clear, no odour.	background conditions. Elevated EC aligns with results up gradient of works. Low pH will be closely monitored at this location, however borehole pump extraction
3/2/2025, 2:48 pm	E9L87	MY groundwater downstream	20.62	17.5	1.57	629	403	6.28	106	1000	SWL-4.23m. Very hot sunny afternoon. Water is brown turbid. No odour. Very similar colour to adiacent basin 8.5. NTU has exceeded 1000.	method is currently being upgraded. Elavated EC aligns with results up gradient of works. Low pH will be closely monitored at this location, however borehole pump extraction
3/2/2025, 3:51 pm	EPL88	MY groundwater downstream	22.67	15.9	1.37	809	518	7.3	-132	12	SWI: 3.47m. Hot afternoon. No recent rain events. Water is very clear with a sulphur like odour.	method is currently being upgraded. Elevated EC aligns with results upgradient of works.
3/2/2025, 1:56 pm	E91.89	LHG groundwater downstream	24.4	24.1	2.01	383	249	6.96	133	226	SWL: 3.27m. Hot sunny day. No recent rain event. Water is slightly turbid, no odour.	Elevated EC aligns with results upgradient of works.
10/2/2025, 2:03 pm	EPL 90	GF01 groundwater downstream	17.88	46.9	4.45	55	35	6.04	154	238	Clear sunny alternoon. High rainfall overnight. SWL 14.09m	Low pH is generally consistent with the historical data for this location. Borehole extraction method is currently being upraded at this location
10/2/2025, 1:51 pm	EPL 91	GF01 groundwater downstream	19:25	24.3	2.24	243	158	7.13	13	21.6	Clear sunny afternoon. High rainfall overnight. SWL 6.58.	All reading are within WQO limits.
10/2/2025, 2:58 pm	EPL 92	GF01 groundwater downstream	19.75	85.5	7.81	115	75	6.87	25	739	Clear sunny afternoon. High rainfall overnight. SWL 13.50m.	All reading are within WQO limits.
10/2/2025, 3:06 pm	EPL 93	GF01 groundwater downstream	18.44	19.3	1.81	236	153	7.15	-56	987	Clear sunny afternoon. High rainfall overnight. SWL 15.20m.	All reading are within WQO limits.
10/2/2025, 3:13 pm	EPL 94	GF01 groundwater downstream	18.42	19.7	1.85	167	109	6.93	3	83.1	Clear sunny afternoon. High rainfall overnight. SWL 15.42m.	All reading are within WQO limits.
10/2/2025, 3:33 pm	EPL 95	GF01 groundwater downstream	20.52	21.7	1.95	840	538	6.3	131	61.8	Clear sunny afternoon. High rainfall overnight. SWL15.89m	Elavated EC and low pH have been consistent at this location for this current seasonal range. This location is currently undergoing upgrades in it's extraction method.
3/2/2025, 9:28 am	EPL 96	GF01 groundwater downstream	17.42	22	2.11	643	412	7.15	232	236	SWLS.32m. This sample point is contaminated due to bore placement and cracking. Please see photos. Sample only collected to meet EPA requirements. Water is slightly turbid, no odour.	Elevated EC is consistent with the historical ranges for this location for February 2025.
10/2/2025, 3:57 pm	EPL 97	GF01 groundwater downstream	20.32	18.7	1.68	437	284	6.78	37	11.3	Clear sunny afternoon. High rainfall overnight. SWL 5.60m	Elavated EC has been consistent at this location for this current seasonal range.
15/2/2025, 10:33 am	EPL102	Groundwater monitoring associated with the Marica emplacement area on Marica Trail	12.53	85.6	85.6	407	265	6.68	67	40.9	SWL-8.68 m, sunny day, turbid water, no od our	Elavated EC has been consistent at this location for this current seasonal range.
8/2/2025, 9:07 am	EPL103	Upstream groundwater monitoring west of the Tantangara emplacement area	15.65	49.8	4.95	39	26	6.44	180	35	Clear sunny day. SWI. 11.11m.	This location is upgradient of works and therefore representative of background conditions.
8/2/2025, 11:05 am	EPL104	Dowslope groundwater monitoring east of the Tantangara emplacement area	18.31	40.1	3.77	59	38	6.33	186	17.3	Clear sunny day. SWL 4.66m.	Low pH aligns with results upgradient of PSE.
8/2/2025, 9:39 am	EPL105	Dowslope groundwater monitoring east of the Tantangara emplacement area	16.76	53.7	5.21	152	99	6.25	188	3.9	Clear sunny day. Could not because if pump set up.	Low pH aligns with results upgradient of PSE.
18/2/2025, 11:54 am	EPL113	Upstream east monitoring of Ravine Bay emplacement area	16.88	29.6	2.87	129	84	5.93	219	639	SWL: 2.39m, slightly turbid, no odour, recent rainfall >145mm	This location is upgradient of works and therefore representative of background conditions.
18/2/2025, 1:05 pm	EPL114	Upstream west monitoring of Ravine Bay emplacement area	20.92	13.6	1.22	403	262	7.34	229	30.3	SWI: 31.54m, clear, no odour, recent rainfall >145mm	This location is upgradient of works and therefore representative of background conditions.
EPL 21266 In Situ W EPL Monthly Monitorin	ater Quality Me g February 2025	asurements										
18/2/2025, 12:20 pm	EPL115	Downstream east monitoring of Ravine Bay emplacement area	16.36	103	10.08	356	231	7.36	123	355	SWL:10.74m, slightly turbid, no odour	High EC aligns with results upgradient of PSE.
18/2/2025, 1:37 pm	EPL116	Downstream west monitoring of Ravine Bay emplacement area	18.94	82.6	7.67	215	140	6.76	206	1,000	SWL: 9.61 Highly turbid	All reading are within WQO limits.
18/2/2025, 2:11 pm	EPL117	Downstream monitoring of Ravine Bay emplacement area	19.81	41.2	3.75	147	96	6.14	-8	1000	SWL: 16.27mtoc	Low pH can be attributed to the surrounding conditions in February 2025.

Note 1 Water Quality (Dijective values for the "principality flour and More Watercourses rifer to the default trigger values for physical and chemical diseason in such east Australia (patient frent) that are reported in Tables 1.32 and 3.33 of ANZECC ABMCANZ (2000).

Note 2 Water Quality (Dijective values for Tables phenomer are the default trigger values for physical and chemical diseason in south-east Australia (phoneburi value and reservoins) that are reported in Tables 3.13 and 3.13 of ANZECC ABMCANZ (2000).

Note 3 Water Quality (Dijective values framework water reference the principal values for physical and chemical diseason from the season partners glant as presented in the Man Waste (5).

Note 4 Water Quality (Dijective values for groundwater reference the default trigger values for physical and chemical diseason in south-east Australia (pulsed nearly for pin and electrical conductivity.

			Part Inguity 2.0 Month Works																																			
	Monthly EPL Sam	pling: 01-28 Feb	bruary 2025 - Groundwater	1	1	1	1	1	1	1	I		1 1		1	1 1				1		1						- 1		1							- 1	- 1
				1	1	1	1	1	1	1	I		1 1		1	1 1				1		1						- 1		1							- 1	- 1
				693	EPLE	EPSA	mis	EP136	10107	691.58	175.68	EPLES	171.79	EPLPE	69179	675.80	EPIRE.	EPLEE	EPLES	EPLEF	175.88	EPLES	675.90	EP1 91	EPLNE	EP130	EP134	87135	EP136	EPLEF	EP1.100	671,100	675,384	EP1385	6P1333 E	P.134	enus I	PLIM PLIN
Analyte	Delt	Limit of Reporting	Water Quality Objective Value*																																			
Physiochemical	_			200000	naine/m	11/2000	10/00/00	tehrin	soletin.	naharn	sittém.	ahrin	nimin.	spiners.	10,0000	100/0	shrin	nine/m	30000	skein	100/0	sheim	1000000	seineim	sales/m	anderin.	telesie.	1000000	seine im	100000	takena.	sécon.	8,000/00	mirata.	1880075 3	mènèn i	taktin I	minutes I maked
	487349		658	6.77	7.85	8.30		7.38		6.17	3.85		6.79	5.76	5.72	733	7.15	6.96		6.28		6.90		7.33	6.87	7.35	6.33		7.15		6.00	Eet		6.25				6.76 6.14
Embrasi Conductority	stile.		30.000	304		1100		197	165	1140	30	- 11	98	-		800	925	2730	200	609		363	20	349	110	230	107	940	549	417	407	**		222				733 347
Children Reduction Patential	89		No Walls Guide Chief by Yolk	-53	-100	-65	- 40	145	139	136	196	189	183	223	290	-44	-0	-54	- 44	106	410	133	154	- 11	25	-56	•	181	312	12	e)			188				204 4
Januarius	×	_	No State Guide Charter State	27.6	34.52	98.79		18.84	20.00	10.73	15.52	11.06	16.91	33.54	33.56	23.55	23.56	19.79	n.n	20.62		24.4	17.88	19.0	19.75	15.44	18.42	8.0	10.40	26.52	10.50	20.00	10.11	15.75			15.35	1856 1880 SEA 552
Classified Corners	Nurturation	_	No Water Quality Class ther Yorker	27.5		16.6		144		20.1	66.6	614	92.6	54.6	96.3	34.3	26.3	26.4		27.5		24.5	46.0	26.3	855	18.3	197		- 11	16.7		614						
Tarkidity	NTV		No Water Quality Objective Value	21.3	204	1300	433	23.6	61	38.3	130	61	1300	13.8	35.3	12.4	1000	33.4	857	1000	13	226	238	23.6	730	967	10.1	63.8	230	23.3	43	10	273	13	CB .	30.3	m	1000 1000
-Protect widow	_			_																					_													
TII	mg/i	,	No Water Quality Objective Value	25	167	1,550			- 6	136	46	104	2,600	ja .	547	15	409	175	139	2,898	-65	X1	252	14	967	717	60	187	150	175	90	15	15					2,799 492
Hardness in Cr223	790	_	No Work Quality Clays the Yorker	222	306	138	202	120	121	222			29		20	224	202	1,000	-00	112	12	64		112	20	113	90	292		129	968	-	,	20	-	226	107	68 43
9.4 (410)	_	_		_			110			_					_												_				10 T							
Ammonia se N	m/s	10		60	300			30	20	120	12	110	10	132	10	30	90	100	10	20	120	133	10	- 10	20	50	10	133	130	50		133	52	20	150	133	100	20 10
Mitche + Mitcale as N (MOst)	un's	32		132	130	7,858	10	40	122	33,300	1,830	140	122	30	30	132	122	122	130	2,758	+32	22	90	30	40	122	120	34.600	5,130	290	10	100	240	3.382	30	22		20 122
Existed Minuses Total	ue't	300		220	3,000	6,000	300	1220	200	5.500	-000	300	1339	+300	1330	1330	2.800	200	300	3,666	500	1330	100	200	1330	220	300	7,000	-000	100		1330	200					GR GR
Mirasan Sata 1	ue l				1,100	20,898	790			24.000	1.000	300	400	+300	+330	+300	1 996	900	900	a total	500	+330			+330	190	100	61.000	1100	400	900	100		1.000	-100	+340	-100	-39
Seeding Phosphorus	167	_		133			170	133	- 10	430	30	- 13	20	30	- 10	433	433	-(33	- (32	12	133	-(33	- 10	430	20	32	433	- 2	130	- 12	- "	30	- 10	- (35	-0.0	133	-00	20 20
Pleashern Total	100	- 12		133	189	4,000	100	10	100	- 60	220	- 62	- 60		120	160	1.00	90	120	190		122	100		160	130	19	100	- 90	150	-		- 0	40	-	10	-	250 100
Conside Total				_	_	_	_	- 1		- 4		- 4	- 1		- 4	- 1	- 1	- 1		- 1		_		- 4	- 1	_	- 1	- 1	- 4	_	_	_		_	_	_	_	
	163	4	-	-				18	- 18	18	1.6	- 1	18	- 14	18	1.6	- 18	18	- 14	18	- 16	18	18	- 14	18	1.6	- 4	16	- 14	18	16	18	16	-4	16	1.5	16	16 16
Notice has	mg/s	_		_					- 01	-0.0		-0.0		-0.0		-0.0			-0.0		- 44	-01		- 44		-01	- 44		- 44									
Of and Green	Agr)	1	,	_		_		13.0	-0.6	42.0	10.8	43.8	12.0	-63	42.0	448	- 63	432	-63	44.0	- 64	43.0	152	6.8	44	444	63	10.0	4.8	44.0	-62	44.0	12.0	4.0	12.0	44.0	150	4.0 4.0
****		_		_																					_													
Aleminium (Intal) Aleminium ((Intal))	100		Name and Administration	_	_	_	_	- "	- 10	400	100	207	101.000	-	1.99	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	- 3	_	_	_	_	_	_	_
Annes (min)	163	- 0	No Water Quality Character Value	- 13	- 5	- 0	- 15	-61	- 11	- 14	- 13	- 63	- 6	-	- 5	- 15	-15	- 6	- 6	- 15	- 45	- 15	- 5	- 6	- 6	- 65	- 6	- 6	- 6	- 6	- "	- 6	- 15	-0		-15	-0	0 0
Armin Markett	un's	- 22	No State Guida Chantas State	- 65	- 11	10.7	-	402	- 11	- 14	- 61	- 63	- 62	40	40.1	- 44	- 11	101	- 11	- 11	10.0	- 61	44.1	- 14	- 14	- 11	- 6	- 61	41	- 13	9.4	40.1	40.1	47.1	24	-	-	45 10
Oversion (Bod) hand	100	12	No Water Guelly Chiertee Order					192		11	12		61																									
Overher 1810 Marched	100			-61	43	- 14		-63		40.7	-0.3	-0.7	453	48.7	43	40.7		48.3	483	4.1	63			48.7		48.7	40.7		-0.7		10.2	40.7		44			+51	41 411
Cooper Bursell	100	43	No Water Could District the Toler	197			- 44		11	14	- 11	- 10	773	-92	- 14	- 42	- 100	- 102	-122	- "		102	- 12	- "	- 10	197	- 10	-92	- 12			- 10			-		-4/	4 44
Const Machael	100	- 22	NO PERSONAL CONTRACTOR CONTRACTOR	-0.5		-	-	- 11		- 22	-0.3	- 22	-63	-	40.0	411	-	453	- 11	45.5	-		-0.5	_	45.5				411		415	-	-	-		-	+11	403 403
Jose Dated	100		No Water Coulds Charles Take						-		1000		F1.99					- 111								10.5					-							211
tra (finales)	100		70	1.690		-	434	- 13		10	- 1	-	- 12	- 1	- 1	- 1	- 12	3.700	- 1	- 13	1.700	- 13	- 1	- 11	- 13	-11	- 13	- 12	- 4	- 13	- 9	- 0	-0	-0		-2	-0	43 3.00
Seed Florida	100	- 63	No Water Quality Objective Value			_		- 63	6.7	- 11	- 11	4.5	44.7	-				-			_		-			-	-	-		-		-	-	-		-	-	
(and (deschael)	set.	41		-0.1	-0.1	-0.7	-0.1	-63	-41	4.1	-0.1	-0.1	-6.3	-61	-0.3	-0.3	-0.1	-0.1	-81	-0.1	-63	-0.1	-0.3	-0.1	- 14	-0.1	48.1	-0.3	-0.1	-0.1	41	-0.1	-0.1	43	41	-0.1	-0.1	401 401
Manager hetal	w/	43	No. Works Contin. Chicago Strike			-		124	10.3	100	77.6	33.3	1.70	-					-				-		- 1	-		-				-	-	-	-	-	-	
Moreon Medad	443	85	1.00	211	20.1	198	104		38.5	181	43	1.7	12.5	44	5.1	186	100	105	82.6	117	177	13.5	10.4	401	179	111	101	803	1.0	101	135		***	1117	100	100	710	756 193
Noted bonel	w/s	8.5	No Water Guelly Chiertee Tobar					165	185	5.6	1.5	12	26.1			_										-		-	_			-				-	-	
Noted Missalved	Leg L	63		3.6	5.3	3.8	42	153	163	6.6	5.6	153	153	5.8	-6.3	36.7	2.3	1.3	3.8	2.3	2.4	2.2	2.2	0.9	2.6	5.6	- 13	10.3	1.9	2.0	1	403	-61	1.7	0.7	5.9	-23	17 14
Shor hotel	un's	8.86	Brillion Challe Charter Salar					+8.81	, et al.	0.01	6.63	10.01	0.00																			-	-			-	-	
Show Introduced	M.S.	4.96	100	48.85	40.00	40.00	45.00	48.85	45.00	44.0	40.00	48.81	48.85	45.00	40.00	45.00	48.00	48.85	45.00	48.81	45.00	48.81	40.00	40.00	48.00	48.81	48.81	40.00	40.00	48.81	-0.64	4.0	400	48.00	40.9	40.00	45.56	45.0
Zec hatel	443		No Story Coulty Charles Sales						4	15			105																									
Zer (Gorden)	MA.		2.4	4	- 43	-0	17			- 0		- 1	-12	_	- 4				_	-12	- 4	-1			18	-1		25		10	41	- 4	2	27	,		-0	1 1 4
 Water Quality Objective values for ground 				and rivers) for																																		

Snowy Hydro 2.0 Main Works Monthly EPL Sampling: 01-28 February 2025 - Talbingo and Tantangara Reservoir

Analyte	Unit	Limit of Reporting	Water Quality Objective Value*
Field			
pH	pH Unit		6.5-8
Electrical Conductivity	μS/cm	-	20-30
Oxidation Reduction Potential	mV		No Water Quality Objective Value
Temperature	*c	-	No Water Quality Objective Value
Dissolved Oxygen	% saturation		90-110
Turbidity	NTU		1-20
Laboratory analytes			
Total suspended solids	mg/L	5	No Water Quality Objective Value
Hardness as CaCO ₃ (filtered)	mg/L	1	No Water Quality Objective Value
Nutrients			
Ammonia as N	μg/L	10	10
Nitrite + Nitrate as N (NOx)	μg/L	10	10
Kjeldahl Nitrogen Total	μg/L	100	No Water Quality Objective Value
Nitrogen (Total)	μg/L	100	350
Reactive Phosphorus	μg/L	1	5
Phosphorus (Total)	μg/L	10	10
Inorganics			
Cyanide Total	μg/L	4	7
Hydrocarbons			
Oil and Grease	mg/L	1	5
Metals			
Aluminium (dissolved)	μg/L	5	55
Arsenic (dissolved)	μg/L	0.2	13
Chromium (III+VI) (dissolved)	μg/L	0.2	1
Copper (dissolved)	μg/L	0.5	14
Iron (dissolved)	μg/L	2	300
Lead (dissolved)	μg/L	0.1	3.4
Manganese (dissolved)	μg/L	0.5	1,900
Nickel (dissolved)	μg/L	0.5	11
Silver (dissolved)	μg/L	0.01	0.05
Zinc (dissolved)	μg/L	1	8
Biological			
Faecal Coliforms	CFU/100mL	1	10/100^
Biochemical Oxygen Demand	mg/L	2	1/5^

				I								I
EPL10	EPL11	EPL28	EPL29	EPL32	EPL38	EPL39	EPL40	EPL46	EPL51	EPL107	EPL108	EPL109
26/2/25	26/2/25	9/2/25	9/2/25	9/2/25	1/2/25	1/2/25	9/2/25	9/2/25	9/2/25	26/2/25	26/2/25	26/2/25
8.12	7.93	8.07	8.16	8.1	8.95	6.66	7.56	8.21	8.18	7.64	7.69	7.89
78	56	28	26	26	28	30	30.9	27	27	34	32	31
205	209	225	227	230	101	233	168	220	86	221	204	151
23.52	23.15	21.2	22.5	22.4	26.22	22.65	19.9	22.61	22.65	22.16	21.74	21.52
75.4	69.2	56.9	58.3	65.2	78.4	91.5	88.4	62.9	57.5	69	82.8	80
0.5	0	13	9.3	9	10.3	18.7	5.16	8	9.1	0	0	23.5
<5	<5	8	<5	<5	6	8	<5	<5	<5	<5	<5	<5
43	31	9	9	9	5	7	9	9	9	17	17	14
40	130	<10	20	<10	<10	<10	20	<10	40	60	20	40
30	<10	20	<10	<10	<10	20	<10	20	<10	<10	<10	20
300	400	300	400	400	300	200	300	300	400	200	200	200
300	400	300	400	400	300	200	300	300	400	200	200	200
<10	<10	10	10	10	<10	<10	<10	50	<10	<10	<10	<10
30	40	40	40	40	30	20	50	40	70	<10	10	<10
<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	10	<10
								•	•			•
<5	<5	26	32	30	24	37	25	30	31	<5	<5	<5
0.4	0.3	0.4	0.3	0.3	0.3	0.2	0.2	0.3	0.3	0.2	<0.2	<0.2
<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
26	12	388	246	247	186	141	104	252	251	6	4	4
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
<0.5	<0.5	1.7	3.4	3.3	2.7	8.8	4.4	3.0	3.2	<0.5	<0.5	<0.5
<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
< 0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01
<1	<1	<1	<1	<1	<1	<1	<1	- 4	<1	<1	<1	<1
1,900	68	6000	-	-	-	-	-	-	3300		-	-
3	3	5			-	-		-	6	-	-	

Jour percentile concentration initialy	
Sample not required at this location	

			owy Hydro 2.0 Main Works		_											_		_	_	_	_	_								_				_					_
Monthly	EPL Sampling	: 01-28 Febr	ruary 2025 - Surface Water		EPSA.	IPA	EPL9	89532	19534	PSIA	EPS36	19524	EPU26	69127		1533 I		ersa e		PS 10		rs to	epsa.	PSM .	PSSS	1947	EP523	PSM .	(PSB)	EPUM	175.88	175.99	EP5.100	(PL30)	FF5.105	FF110	PULL	(8120	FF5322
Analyte	Unit	Limit of Reporting	Water Quality Objective Value*	""		in.		80.12	en.a		en.as			- I					"		"		enas	insa			80.	er.aa	enas	enas.	en.ss		er.au	64.20	enus	- FALLE	- Brain	inia.	
Field				2/02/25	11/12/25	2/02/25	2/92/25	2/02/25	2/92/25	2/02/25	2/92/25	19/02/25	1912/2S	V02/25 1	/02/25 1	/III/05 1	02/25 1	mans 1/	10/25	102/25 4/6	2/25 3	/02/25	Ony	Ony	17/2/25	Ony	Ony	15/02/25	15/02/25	15/93/25	Ony	15/02/25	15/92/05	15/2/25	8/2/25	18/2/25	Ony	Dry	19/92/25
and the same of th			454	7.45	2.46	8.38	8.22	7.07	7.64	8.27	2.53	7.17	8.1	8.31	7.89	7.66	7.36	7.69	.62	2.22 2	93	9.18	Dry	Dry	7.01	Dry	Day	8.65	9.34	8.45	Dry	8.58	2.44	8.86	8.67	7.54	Dry	Dry	7.79
Electrical Conductivity	utidom		30.150	163	116	169	155	163	163	165	165	607	77.4	75.2	84.3	86.4	96.7	55.1	94	68.6 7	. 9	78.9	Dry	Dry	1230	Dry	Day	441	461	899	Ory	265	587	362	1279	6.7	Dry	Dry	778
Children Budgetion Entential	m//		No Water Quality Objective Value	267	28	206	212	288	232	213	199	178	161	148	212	219	241	222	25	115 1	61	178	One	Dry	142	Dov	Onv	164	243	-21	Onv	47	19	- 65	95	140	Onv	Dry	173
Temperature	*		No Water Quality Objective Value	19.63	22.46	212	21.23	19.61	20.25	20.92	22.62	14.66	22.71	20.38	16.53	17.42	9.73	16.62	5.A2	22.57 24	93	24.91	Ony	Dry	19.6	Ony	Ony	20.64	19.7	21.13	Ony	15.14	16.96	16.06	25.78	13.87	Ony	Dry	14.06
Standard Orygen	N saturation		90.110	79.9	62.7	67.8	29.3	74.3	75.3	66.5	77.A	75.5	77.4	75.2	14.3	95.4	6.7	98.1	94	68.6 7		78.9	Dry	Dry	68.5	Ony	Onv	34.4	52.5	74.8	Onv	66.6	67.5	66.9	74.3	95.8	On	Dry	64.1
Turbidity	NTV		115	3.9	68.4	0.3	4.2	3.1	2.4	13	0.4	33.6		5.3						24 2		16	Dry	Dry	12.3	Dry	Ony	1000	1000	507	Ony	45.3	81.5	206	45.6	44	Dry	Dry	206
aboratory analytes	i		î——			_							_		_		_		_																		_		-
TV.	ma/L	- 1	No Water Quality Objective Value	- 65	-65	-65	- 65	-6	-65	-6	-65	-6		45	6	6	4	6	6	45		19	Ony	Dry	-8	Ony	Dev	744	804	126	One	25	27	- 0	- 6	- 15	Dry	Dry	195
Hardness as CaCOS	mg/L	1	No Water Quality Objective Value	6)	45	- 65	72	68	68	71	60	156	19	12	10	9	9	16	16	21	4	176	Dry	Dry	360	Dry	Ony	41	40	148	Ony	85	236	125	352	19	Ony	Dry	184
Nutrients .	i		1																																				
Ammonia as N	167	22	13	32	-(2)	70	42	20	42	10	20	20	30	10	<00	42	40	30	10	<20	2	50	Ony	Dry	20	Dry	0ny	-00	40	-60	On.	680	20	100	60	<10	Day	Dry	20
Mitrite + Nitrate as N (NOx)	/gq	10	15	10	20	80	490	10	33	10	<30	23,600	10	30					10	10 4		14,900	Dry	Dry	61,800	Dry	Day		2,890	5,940	Dry	4,890	15,600	15,800	40,000	40	Dry	Dry	28,900
Kjeldahi Nitregen Total	HE/L	100	No Water Quality Objective Value	300	200	300	200	290	200	200	200	2,900	100	<900	200								Ony	Dry	2,400	Dry	Ony		1,400	1,100	Ony	1,400	900	500	2,800	<100	Ony	Dry	3,200
Nitrogen (Total)	HE/L	100	250	300	200	400	200	290	200	200	200	26,500	100	1900	200				100			15,500	Ory	Dry	64,200	Dry	Ony		1,400	7,000	Ony	6,300	20,500	15,300	42,800	<100	Ony	Dry	32,100
Reactive Phosphorus	MAX.	1	15	-08	30	418		<10	-01	<50	<13	<50	<00	433	450		<10					<10	Dry	Dry	400	Dry	Ony	50	410	20	Ony	40	<33	10	10	<10	Ony	Dry	<50
Phosphorus (Total)	HEY	33	>3	20	20	50	20	40	22	30	20	20	50	30	10	43	30	20	40	60	<u> </u>	30	Dry	Dry	60	Ory	Ory	540	560	260	Ony	30	50		- 20	10	Dry	Dry	160
Regarios Carnide Total	us/s			ι —		_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_		_	_	_	_	_		_		_	_	_	_	_
	HEA	4	4	- 64	- 64	- 64	- 64	44	64	44	44	44	44	44	14	64	44	44	64	44	4	<4	Dry	Dry	- 64	Ony	Ony	-64	64	44	Cry	44	- 64	4	44	- 64	Dry	Dry	- 4
Cit and Grasse	reg/L	-		l	<1.0		1	<1.0		v10	1	rin I	r10	r10		rto I		410		410 4	.0	4.0	Ony	Ony	4.0	Doy T		41.0	1	<1.0	Onv	41.0	<1.0	<1.0	<1.0	<10	One	Dry	<1.0
Mendo	mg/s	-		4.0	41.0	41.0	41.0	410	41.0	dir.	41.0	41.0	dir.	41.0	dir	41.0	4.0	4.0	1.0	40 4		9.0	ury	Uty	4.0	wy	ony	q.p	41.0	dia.	uy	41.0	41.0	4.0	11.0	9.0	uy	Dry	1 410
Auminium (total)	ue/s	-	No Water Guelly Objective Value	!—		_	_			_		_	_	_	_	_	_	_	_		_		One	Dry	- 11	Dov					_			_		_		_	_
Aluminium (foreign)	NA.	5	No Water Quality Objective Value	-	17	- 6	- 4	- 6	- 6			-	15	1	0	94	22	33	10	99		13	Ony	Ony	71	Dry	One	9	9	6	One	- 11	30	- 45	7	- 0	One	flor	- 6
Arunic hatal	Val.	0.2	No Water Quality Objective Value	9	17	9	9	9	9	9	9		B .	•	12	34	20	11	11	29		69	Ony	Dry	9	Dry	Dily	- 23	,	9	ay	23	20	- 6	- 1	12	ay	DVy	-
Arrent Marked	100	0.2	No Water Quarty Objective Value	0.6	0.4			0.6			0.6	-	-	-0.3	-0.3		43	63		05 4		60	Ory	Cry	0.0	Ony	-	22	423		-	- 13	36	- 10	2.4	0.0	-	for.	63
Oversign (III-VII flotal)	NO.	0.2	No Water Quelly Objective Value	1.5	0.4	9.6	0.6	- 15	0.6	- 0.5	0.6	0.6	40.7	41/	40.7	40.7		0.7	-	0.5		15	Doy	Dry	0.6	Dry	200	13	17.7	**	34	- 17	1.6	13	- 1.5	- 2.5	- 01	Ory	- 0.3
Oversian (BMI) (deather)	107	0.2	0.01	0.3	40.2	- 41	40.1	4.2	- 41	40.2	-0.2	0.4	03	0.2	40.7	-0.1	43	40.1	9.2	(0)		14	Ory Or	Dry	0.5	Dry	Ann.	7.0	12.0	15.2	der.	18.3	8.4	13.8	2.1	-62	Dry	Do	-02
Copper Botal)	167	0.5	No Water Quality Objective Value	1	1	-	-	-	-	-	-	-	-	-		-		-		-		0.8	Dry	Dry	10.5	Ony	-	-	-	-	-	-	-	-	-	-	-	-	
Copper (Rosched)	100	9.5	1	-0.5	0.6	42.1	40.1	40.5	-01	401	42.5	0.6	401	-0.1	103	-01	95	40.5	95	40.1 4		0.6	Dry	Dry	10.5	Ony	Day.	1.7	1.1	1.6	Do	10.5	40.5	0.6	40.5	40.5	Dry	Dry	103
tron-(total)	/au	2	No Water Quality Objective Value																			14	Ony	Dry	68	Dry				-						-	-		-
tron (dissolved)	ue/s	2	300	4	43	2		4	- 5	6	2	14	24	22	45	11	162	165	71	153 1	21	+2	One	Dry	(2)	Ony	Onv	42	2	6	Onv	12	(2)	e2	- a	12	Onv	Dev	4
Lead (total)	Ne/S	0.1	No Water Quality Objective Value																			40.1	Ony	Dry	0.1	Dry		-		-				-		-	-		
Lead (dissolved)	199	0.1	1	-0.1	40.1	40.1	40.1	40.1	40.1	40.1	-0.1	40.1	40.1	<0.1	40.1	-0.1	61	40.1	0.1	40.1 4	11	46.1	Dry	Dry	49.1	Dry	Day	40.1	40.1	40.1	Dry	-0.1	40.1	49.1	40.1	40.1	Dry	Dvy	40.1
Manganese (total)	791	0.5	No Water Quality Objective Value																			1.2	Dry	Dry	9.6	Dry													
Manganese (dissolved)	HEA.	0.5	1,300	1.2	3.8	1.7	3.0	1.2	1.4	1.9	2.2	106	12.1	2.4	3.5	2.1	2.5	8.5	6.2	68.0		67	Ory	Dry	2.2	Ony	Ony	0.6	40.5	14.4	Ony	40.5	14.0	72	40.5	40.5	Ony	Dry	12.4
Michel (betal)	105	0.5	No Water Quality Objective Value																			49.5	Dry	Dry	1.8	Dry													
Nickel (dissolved)	Agr.	0.5		<0.5	40.5	<0.5	40.5	40.5	<0.5	<0.5	<0.5	0.9	40.5	<0.5	40.5	<0.5	0.5	40.5	0.5	<0.5 <			Ony	Dry	1.1	Dry	Ony	0.6	<0.5	0.6	Ony	40.5	0.8	<0.5	1.4	40.5	Ony	Dry	1.3
Sher (total)	Jun/A	0.06	No Water Quality Objective Value	1	1		-					- 1	- 7	- T		. —	- T		- T			<0.01	Ony	Ory	4991	Dry												-	1
Silver (disselved)	HE/L	0.00	0.02	<0.05	<0.01	-0.01	<0.01	<0.01	<0.05	<0.01	<0.05	<0.21	<001	40.05	<0.01	40.00	0.01	4001 4	0.00	481 4	01	<0.01	Dry	Dry	4001	Dry	Day	40.01	<0.05	<0.01	Ony	40.06	<0.21	<0.01	4031	<0.01	Dry	Dry	<0.01
Jinchest .	MAX.	- 1	No Water Quality Objective Value	I —	-	-		-					-	-							_	d	Dry	Cry	-	Dry							-			-	-		-
																										Ony												Dry	- 4

Monthly EPL Sampling: 01-28 February 2025 - Treated Water

Analyte	Unit	Limit of Reporting	Water Quality Objective Value*
Flow Rate	1		
Inflow*	ML/day		
Outflow"	ML/day		4.32 (EPL 43 / 50)
Field			
pH	pH Unit	-	6.5-8.5
Electrical Conductivity	μS/cm	-	700 (EPL 41) / 200 (EPL 50)
Oxidation Reduction Potential	mV	-	No Water Quality Objective Value
Temperature	*c	-	15
Dissolved Oxygen	% saturation	-	No Water Quality Objective Value
Turbidity	NTU	-	<25
Laboratory analytes			
Total suspended solids	mg/L	5	5/10
Hardness as CaCO ₃ (filtered)	mg/L	1	No Water Quality Objective Value
Nutrients			
Ammonia as N	μg/L	10	200/2000^
Nitrite + Nitrate as N (NOx)	μg/L	10	10
Kjeldahl Nitrogen Total	μg/L	100	No Water Quality Objective Value
Nitrogen (Total)	μg/L	100	350/-^
Reactive Phosphorus	μg/L	1	No Water Quality Objective Value
Phosphorus (Total)	μg/L	10	100/300^
norganics			
Cyanide Total	μg/L	4	No Water Quality Objective Value
Hydrocarbons			, , ,
Oil and Grease	mg/L	1	2/5^
Metals			
Aluminium (dissolved)	μg/L	5	55
Arsenic (dissolved)	μg/L	0.2	13
Chromium (III+VI) (dissolved)	μg/L	0.2	1
Copper (dissolved)	μg/L	0.5	14
Iron (dissolved)	μg/L	2	300
Lead (dissolved)	μg/L	0.1	3.4
Manganese (dissolved)	μg/L	0.5	1,900
Nickel (dissolved)	μg/L	0.5	11
Silver (dissolved)	μg/L	0.01	0.05
Zinc (dissolved)	μg/L	1	8
Biological			
Faecal Coliforms	CFU/100mL	1	10/100^
Biological Oxygen Demand	mg/L	2	5

EPL 41	EPL 43	EPL 44	EPL 45	EPL 47	EPL 48	EPL 49	EPL 50
		•	'		'	•	
2/2/2025						I	26/2/20
-	0.0000	0.1994	0.0523	0.2074	0.0887	0.6811	-
-	-	-	-	-	-	-	-
8.32	-	-	-	-	-	-	5.14
2210	-	-	-	-	-	-	10.8
203	-	-	-	-	-	-	224.5
26.69	-	-	-	-	-	-	19.6
66.3	-	-	-	-	-	-	85.7
9.9	-	-	-	-	-	-	8.0
<5	-						<5
106							41
106	-	-	-	-	-	-	<1
2,110							30
18,300	-	-	-		-	-	20
3,300	-	_	-	-	-	-	200
21,600		-	-		-	-	200
70	-	-	-	-	-	-	<10
80	-	-	-	-	-	-	40
11			-		-		<4
<1.0	-	-	-		-	-	<1.0
16							<5
3.0	-		-	-	-		<0.2
13.3						_	<0.2
<0.5	-		-	-	-	-	<0.2
	-	,	-	-	-	-	_
<2							<2
<0.1	-		-		-		<0.1
2.7	-		-		-		<0.5
<0.5	-		-	-	-	-	<0.5
<0.01	-		-	-	-	-	<0.01
2	-	-	-	-	-	•	<1
<1	-			-			<1
<2	-		-	- :			<2

- Note: There is no 100th percentile limit for Nitrogen (Total).

 * Water Quality Objective values Treated Water reference the predicted values for physical and chemical stressors from the treatment plant as presented in the Main Works EIS.

 Samples not required

 * 90 Percentile concentration limit/100 Percentile limit

 Inflows to STP and CWTP do not directly correspond to outflow at RO as much of the water is reused on site

EPL 21266 In Situ W EPL Monthly Monitorin		easurements										
Table 1 - Surface Water C River and Minor Waterco	Quality Data		Temp (*C)	DO (%) 90 - 110	DO (mg/L)	Water Quality EC (µS/cm) 30 - 350	y Objectives (see no TDS (mg/L)	pH 6.5 - 8.0	Redox (mV)	Turbidity (NTU) 2 - 25		
Date and Time	EPL Site ID	Location Description	W (94)	DO (%)		EC (µS/cm)	me (рН	Redox (mV)	Turbidity (NTU)	Field Comments	Context
3/3/2025, 8:22 am	EPLS EPLS	Yarrangobilly River, upstream of the exploratory tunnel and construction pad	Temp (*C) 17.93	88.4	DO (mg/L) 8.39	219	TDS (mg/L)	8.02	Redox (mv)	Turbidity (NTO)	Clear sunny day, no recent rain, regular flow of water	This sample point is upstream of works and is therefore
										3.7		representative of background conditions. This sample point is upstream of works and is therefore
3/3/2025, 9:03 am	EPL6	Wallaces Creek, upstream of Yarrangobilly River and Wallaces Creek confluence	16.42	63.3	6.19	123	80	7.9	118	3.7	Sunny clear day, regular flow clear water Clear sunny day, no wind, no recent rain. A slight ploom of sediment is close to the edge of	representative of background conditions.
3/3/2025, 11:48 am	EPL8	Yarrangobilly River, downstream of Lick Hole Gully	21.61	68.7	6.05	221	144	7.86	139	4.6	the river, there seems to be runoff seeping into river from the ground at stairs shown in photo 1	Low DO aligns with reults upstream of works and reduced flow.
3/3/2025, 11:17 am	EPL9	Yarrangobilly River, downstream of the accommodation camp and upstream of Talbingo Reservoir	20.07	84	7.62	177	115	8.14	146	10.1	Sunny clear day no wind no recent rain Water flow regular	Low DO aligns with reults upstream of works and reduced flow.
3/3/2025, 8:43 am	EPL12	Yarrangobilly River, immediately downstream of portal pad	17.47	66.2	6.33	172	112	8.06	101	1.6	Clear sunny day, no recent rain, regular flow of water	Low DO aligns with reults upstream of works and reduced flow.
3/3/2025, 9:22 am	EPL14	Yarrangobilly River, downstream of road construction areas	17.39	107.4	10.29	166	108	7.99	121	3.3	Sunny day no wind regular flow of water	All reading are within WQO limits.
3/3/2025, 9:47 am	EPL15	Yarrangobilly River, downstream of road construction areas	17.77	71.5	6.8	170	1.7	8.05	125	1.7	Sunny clear day, no wind, no recent rain, regular flow of water	Marginally elevated pH and low DO align with the upgradient conditions for March 2025.
3/3/2025, 12:08 pm	EPL16	Yarrangobilly River, downstream of road construction areas	22.66	65.2	5.63	175	114	8.25	137	3.3	Clear sunny day no wind no recent rain, regular flow of river	Low DO and high pH aligns with reults upstream of works and the reduction of water available.
7/3/2025, 10:26 am	EPL24	Yarrangobilly River tributary (Watercourse 2), directly downstream of road	18.43	65.1	6.09	1,270.00	811	6.7	134	0.4	Sunny day, clear water, no smell, very low flow	This location has been an objective of constant monitoring and reporting. High EC potentially attributed to low flows at this location.
18/3/2025, 11:10 am	EPL26	Eucumbene River downstream of Marica Road	11.98	74.2	8	37	24	7.86	190	5.3	Low steady flow , clear water , no odor . Very high traffic area for horses churned up banks as a result. Cool sunny day slight breeze. Lower level of algae present compared to upstream.	Low DO aligns with the baseline data and remains with the upstream conditions.
18/3/2025, 10:52 am	EPL27	Eucumbene River upstream of Marica Road	11	71.2	7.85	36	23	8.23	164	7.65	Clear water, low flow, steady stream, no odor. Sign of animal activity around the banks. The algae is brown. Slight breeze, sunny, cool morning. Qa done here	This sample point is upstream of works and is therefore representative of background conditions.
1/3/2025, 9:07 am	EPL30	Kellys Plain Creek, downstream of accommodation camp and laydown areas	13.43	61.4	6.4	40	26	6.89	298	5.1	Sunny day, clear, slow flow, no smell	This location aligns with the upgradient conditions for March 2025.
1/3/2025, 8:49 am	EPL31	Kellys Plain Creek, upstream of accommodation camp and laydown areas	13.5	69.4	7.23	32	20	7.12	285	8.8	Sunny day, clear, slow flow, no odour	This sample point is upstream of works and is therefore representative of background conditions.
1/3/2025, 8:24 am	EPL33	Murrumbidgee River, downstream of Tantangara reservoir outlet	17.83	68.3	6.49	31	20	7.23	239	13.2	Sunny day, clear water, slow flow, no odour	This location aligns with the upgradient conditions for March 2025.
1/3/2025, 7:35 am	EPL34	Nungar Creek, upstream of Tantangara Road	12.18	66.3	7.12	48	31	8.19	136	71.9	Sunny day,clear, low flow, the level of water reduced notably, no odour	This sample point is upstream of works and is therefore representative of background conditions.
1/3/2025, 7:48 am	EPL35	Nungar Creek, downstream of Tantangara Road	11.71	68.8	7.46	40.0	26	7.87	155	14.9	Sunny day, clear, very low flow, the water level has reduced notably, note something oily in the water but may not be grease and no smell	Low DO aligns with the upstream conditions for March 2025.
8/3/2025, 10:04 am	EPL 36	Camerons Creek, upstream of works in Rock Forest	16.06	58.2	5.74	52	34	7.29	126	7.8	Sunny day, clear water, no odour, slow and low flow	This sample point is upstream of works and is therefore representative of background conditions.
8/3/2025, 9:35 am	EPL 37	Camerons Creek, downstream of works in Rock Forest	15.75	63.6	6.31	54	35	7.35	145	9.2	Sunny day, slow and low flow, no odour	Low DO remains the historical data and aligns with the upgradient conditions for March 2025.
4/3/2025, 10:43 am	EPL52	GF01 leachate basin	23.49	80.4	6.81	863.00	552	9.21	93	47.1	Smells like organic rotting subtly , Green tinge,Dry hot weather	The leachate storage infrastructure is expected to have spikes in in- situ reading results.
	EPL53	GF01 surface water upstream east	-	-					-	-	This location is dry	
	EPL54	GF01 surface water upstream west								-	This location is dry	
-	EPLSS	GF01 surface water downstream	-	-	-	-	-	-	-	-	This location is dry	-
-	EPL67	Nungar Creek surface water downstream west from Tantangara emplacement area	-	-	-	-		-	-	-	The reservoir level at Tantangara is low and is not representative sample.	÷
	EPL71	Surface water downstream of Marica emplacement		-							Unable to access site due to land clearing activities.	
13/3/2025, 2:06 pm	EPL84	F8 Basin	28.62	128.5	9.92	966.00	618	9.29	115	782	No rainfall in last 24 hrs	The leachate storage infrastructure is expected to have spikes in in- situ reading results.
13/3/2025, 2:17 pm	EPL85	MY07 Basin	23.51	56	4.75	561	359	8.85	129	1,000.00	Basin is cutrently being relined. Cannot take sample.	The leachate storage infrastructure is expected to have spikes in in- situ reading results.
13/3/2025, 2:26 pm	EPL86	LHG01 Basin	27.8	80.4	6.29	1,130.00	724	8.67	147	56.5	No rainfall in last 24 hours	The leachate storage infrastructure is expected to have spikes in in- situ reading results.
	EPL98	Rock blanket diversion monitoring under GFO1 liner	-	-	-	-		-		-	This location is dry	-
18/3/2025, 9:50 am	EPL99	Marica Leachete Basin-Turkey's Nest	12.29	69.8	7.46	511	327	10.45	59	170	A green/grey tinge. No ador. Sunny cool marning. No wind. Evidence of grime/gunk on the surface.	Low DO and elevated turbidity can be attributed to the runoff accumulating in the sediment basin. Water was taken for treatment at the process water treatment plant or re-use where parameters where met.
	EPL100	Marica Lower Leachate Basin USS Shaft	-	-	-	-	-	-	-	-	Too low to sample	Due to leachate management process upgrades, this location is managed at water levels that prohibit water sampling.
	EPL101	Marica Leachate Basin Spoil Pad		-	-	-	-	-	-	-	Too low to sample	Due to leachate management process upgrades, this location is managed at water levels that prohibit water sampling.
5/3/2025, 8:10 am	EPL106	Ravine Bay Leachate basin 1	21.14	101.9	9.02	1,379.00	875	7.66	196	20.8	Clear, no odour, 95% full	The leachate storage infrastructure is expected to have spikes in in- situ reading results.

EPL 21266 In Situ W EPL Monthly Monitorin		easurements									I	T
-	EPL110	Upstream monitoring of Ravine Bay emplacement area	-	-	-	-	-	-	-	-	Could not sample, low water level	
-	EPL118	Ravine Bay Leachate basin 2									Water level too low.	
-	EPL120	Ravine Bay Leachate basin 4									Water level too low.	
7/3/2025, 10:52 am	EPL122	GFO1 Drainage Line (Formerly EPL 55b)	17.55	78.8	7.51	539	345	7.86	123	100	Sunny day, clear water, no smell, very low flow	This location has been an objective of constant monitoring and reporting.
Table 2 - Reservoir Wate Talbingo and Tantangare	r Quality Data o Reservoirs		Temp (*C)	DO (%)	DO (mg/L)	Water Qualit EC (µS/cm)	ty Objectives (see no TDS (mg/L)	ote 2)	Redox (mV)	Turbidity (NTU)		
Date and Time	EPL Site ID	Location Description	Temp (*C)	90 - 110 DO (%)	-	20 - 30	-		Redox (mV)	1 - 20	Field Comments	Venderal .
16/3/2025, 8:07 am	EPL10	Talbingo Reservoir, downstream of road works and upstream of water intake point	22.97	64.8	5.56	102	66	8.1	191	1.61	Prece is constant. Cloud overhead and cool morning. No odor. Some visible gunk around the area on the surface. No visible difference in colour.	
						_					Visible dusty srum, and hubbles on the surface but no sheen. The dusk huild up was a lot	for March 2025. Flevated FC and nit alien with results unstream of works. FC and n
16/3/2025, 7:54 am	EPL11	Talbingo Reservoir, downstream of outlet	22.84	70.6	6.08	63	41	8.01	192	1.15	worse downstream on the curve of the reservoir where the wind was less. There is a slight breeze, it's a cool morning. Relatively clear water. No odor.	are consistent with upgradient conditions in the Yarrangobilly Rive for March 2025. This sample point is upstream of works and is therefore
26/3/2025, 9:38 am 26/3/2025, 10:15 am	EPL28 EPL29	Tantangara Reservoir, upstream of works in the mouth of the Murrumbidgee River Tantangara Reservoir, downstream of works area and upstream of lower	18.43 20.14	93.2 95.5	8.74 8.66	27	17	7.82	130	7.3	Foggy day. Water very green. Visable algal bloom. No odor. Rain over the weekend. Water very green. Visible algal bloom. No odor. Foggy day. Rain last weekend.	representative of background conditions. This sample point is upstream of works and is therefore
26/3/2025, 10:07 am	EPL32	Murrumbidgee River Tantangara Reservoir, Tantangara Intake. Downstream of construction works	20.19	91.5	8.29	26	17	8.18	14	12.9	Water very green, visible algal bloom. Foggy day. No odor. Rain last weekend.	representative of background conditions. This location aligns with the upgradient conditions for March 2025
1/3/2025, 1:04 pm	EPL38	Tantangara Reservoir, variable location dependant on tide and reservoir levels. Between the emplacement area and the ancillary facilities for emplacement	22.63	54.1	4.67	36	23	7.94	174	8.8	Sunny day, clear water, no odour	Low DO and elevated EC with turbidity can be attributed to low reservoir levels in preparation for intake works.
8/3/2025, 10:18 am	EPL39	activities Confluence of Nungar Creek and Tantangara Reservoir, variable location dependent	17.6	62.1	5.93	29.6	22.4	6.34	664.1	7.17	Low water, low velocity flow. Sunny morning, no fog. Light winds, picking up. Visibly clear	Low DO and pH can be attributed to low reservoir levels in
		on tide and reservoir levels. Upstream of Tantangara construction works Confluence of the upper Murrumbidgee River and Tantangara Reservoir, variable									water. Sunny morning, no fog, minimal winds. Low water level, foam observed on surface. Visible	preparation for intake works. Low DO and pH with elevated EC can be attributed to low reservoir
9/3/2025, 9:00 am	EPL40	location dependent on tide and reservoir levels. Upstream of works	16.5	75.3	7.35	31.7	24.6	8.95	625.5	2.63	summy morning, no rog, minimal winds. Low water level, toam observed on surface. Visible sediment and slightly turbid water, Low velocity flow.	levels in preparation for intake works.
26/3/2025, 10:32 am	EPL 46	Tantangara Reservoir, diffuser outlet discharging into Tantangara Reservoir from Tantangara STP/PWTP	20.29	97.1	8.78	26	17	8.5	139	12.5	Water very green. Visible algal bloom. No odor. Foggy day. Rain last weekend.	The elevated pH can be attributed to the significant water level reduction and changes in the surrounding conditions in March 202
26/3/2025, 10:23 am	EPL 51	Tantangara Reservoir, downstream of Tantangara STP/PWTP diffuser outlet	20.21	93.8	8.49	26	17	8.43	140	10.7	Water very green. Visible algal bloom. No odor. Foggy day. Rain last weekend.	The elevated pH can be attributed to the significant water level reduction and changes in the surrounding conditions in March 202
16/3/2025, 7:40 am	EPL107	Upstream monitoring of Ravine Bay emplacement area within Yarrangobilly River	22.01	72.6	6.35	40	26	7.79	193	0.76	Clear water, no visible signs of sheen, bubbles or algae on the surface. No works going on at the pise area currently. Slight breeze. Overcast and cool morning. No odors.	Low DO and elevated EC align with results upstream of works. EC is consistent with background conditions in the Yarrangobilly River.
16/3/2025, 7:33 am	EPL108	Monitoring of Ravine Bay emplacement area (center of PSE) within Yarrangobilly	21.97	67.8	5.93	38	25	7.72	190	0.85	No odors. Slight breeze. Cool, slightly overcast morning. No visible sheen, algae, or bubbles of surface. Clear water colour.	n Low DO and elevated EC align with results upstream of works. EC is consistent with background conditions in the Yarrangobilly Pliver.
16/3/2025, 7:18 am	EPL109	Upstream monitoring of Ravine Bay emplacement area within Yarrangobilly River	21.7	75.6	6.65	36	24	7.77	180	0.66	No visible surface sheen, bubbles, or algae. No odors. Breeze seen on water. Clear water. Commoning, some clouds overhead.	
Table 3 - Treated Water	Quality Data					Water Qualit	ly Objectives (see no	ote 3)			1	
Talbinga Date and Time	EPL Site ID	Location Description	Temp (*C) Temp (*C)	DO (%)		EC (μS/cm) 700 EC (μS/cm)	TDS (mg/L) TDS (mg/L)	pH 6.5 - 8.0 pH	Redox (mV) - Redox (mV)	Turbidity (NTU) 25 Turbidity (NTU)	Field Comments	Context
16/3/2025, 8:13 am	EPL41	Lobs Hole STP/PWTP Final Effluent Quality Monitoring Point. Downstream of final treatment, prior to discharge to Talbingo Reservoir.	25.15	73.6	6.07	6	4	7.84	507	0.9	HoribaS was used. Clear, no odour. Three samples taken. Plant running for 6+ hours	All reading are within WQO limits.
Table 4 - Treated Water C Tantangara	Quality Data		Temp (°C)	DO (%)	DO (mg/L)	Water Qualit EC (µS/cm)	TDS (mg/L)	ote 3) pH	Redox (mV)	Turbidity (NTU)		
Date and Time	EPL Site ID	Location Description	Temp (*C)	DO (%)	DO (mg/L)	200 EC (μS/cm)	TDS (mg/L)	6.5 - 8.0 pH	Redox (mV)		Field Comments	Context
12/3/2025, 8:34 am	EPL50	Tantangara STP/PWTP Final Effluent Quality Monitoring Point. Downstream of final treatment, prior to discharge to Tantangara Reservoir.	16.1	55.2	5.44	18.6	14.6	7.92	701	0.53	Water sample taken from RO Out.	All reading are within WQO limits.
Table 5 - Groundwater Q GF01 Surface Water and	uality Data Groundwater		Temp (*C)	DO (%)	DO (mg/L)	Water Qualit EC (µS/cm)	TDS (mg/L)	pH	Redox (mV)	Turbidity (NTU)	3	
Date and Time	EPL Site ID	Location Description	Temp (*C)	DO (%)	DO (mg/L)	30 - 350 EC (µS/cm)	TDS (mg/L)	6.5 - 8.0 pH		Turbidity (NTU)	Field Comments	Context
4/3/2025, 9:05 am	EPL56	GF01 groundwater upstream east	16.12	15.8	1.55	206	134	7.64	197	54.2	SWL- 10.19m. Breezy day, sunny, dry weather	All reading are within WQO limits.
		GF01 groundwater upstream west										
4/3/2025, 9:24 am	EPL57	arox groundwater opportunit west	18.01	19.6	1.85	197	128	7.17	247	62.6	SWL- 14.9m water depth. Sunny breezy day	All reading are within WQO limits.
4/3/2025, 9:24 am 4/3/2025, 11:09 am	EPLS7 EPLS8	GFO1 groundwater downstream	20.63	19.6 17.5	1.85	197 952	128 609	7.17 6.07	247 199	62.6 127	SW114.9m water depth. Sunny breezy day SW16.68m. No recent rain, Hot dry weather	
												Elavated EC and low pH are generally consistent with historical ran for this location. However, borehole pump extraction method is in the process of being upgraded.
4/3/2025, 11:09 am 15/3/2025, 8:35 am EPL 21266 In Situ W	EPLS8 EPLS8	GF01 groundwater downstream Tantangara groundwater downstream West	20.63	17.5	1.57	952	609	6.07	199	127	SWL- 6.68m. No recent rain, Hot dry weather Water is running clear. The flow of water is continuous. No obvious odors. Sunny dry	Elavated EC and low pH are generally consistent with historical ran- for this location. However, borehole pump extraction method is in the process of being upgraded. Low pH and EC met the historical ranges for March 2025. These fall
4/3/2025, 11:09 am 15/3/2025, 8:35 am EPL 21266 In Situ W EPL Monthly Monitorie	EPL58 EPL68 fater Quality March 2025	GF01 groundwater downstream Tantanger groundwater downstream West 888UKEMENTS	20.63	17.5	1.57 5.62	952	609	5.99	199	127	SNL: 6 dalm. No recent rain, field of ywesther Water is running clear. The fixe of water is continuous. No obvious odors, Swiny dry washler. PSK works are developing up gradient of the Bore.	Elevated EC and low pix are generally consistent with historical ram, for this location. However, loverhile pump entraction method is in the process of being logolated. Low pix and EC met the historical ranges for March 2025. These fall the with current seasonal changes.
4/3/2025, 11:09 am 15/3/2025, 8:35 am EPL 21266 In Situ W EPL Monthly Monitorin 15/3/2025, 8:50 am	EPL58 EPL68 Fater Quality Mag March 2025 EPL69	GTGS groundwater downstream Testangers groundwater downstream West ESSAUREMENTS Testangers groundwater downstream East	20.63 14.56	17.5 55.2 45.3	1.57 5.62 4.52	952	14	6.07 5.99	199 228 231	29	Dist 6 dalm. No recent sap, Not dry weather Water is running clear. The flow of water is continuous. No obvious oders, Suriny dry weather, PSE works are developing up gradient of the born. Dist colour was orange rings. No obvious oder. Pse works developing up gradient/psignores. Darry dry dry.	Revende C. Can dise yet we generally consistent with historical re- tent his boston. Never, bornoise year per extraction revended is in the process of being suggested. On the process of being suggested. Group at and C. Cent of historical ranges for March 2023. These fail fine with current seasonal changes. Low yet and C. Cent the historical ranges for March 2023. These fail is not written to the seasonal changes.
4/3/2025, 11:09 am 15/3/2025, 8:35 am EPL 21266 In Situ W EPL Monthly Monitorie	EPL58 EPL68 fater Quality March 2025	GTS1 groundwater downstream Testangers groundwater downstream West SEBMINETERS TESTANGERS	20.63	17.5	1.57 5.62	952	609	5.99	199	127	Dist. 6 date. No insent size, Not dry weather Water is running clear. The flow of water is continuous. No obvious odors, Suriny dry weather. Plift works are developing up gradient of the bore. Dist colour was ownger triage. No obvious odor. Per works developing up gradient/belgicent. County of yellow. Loss of settled orange coloured sediment at bottom of hydro sevene. Cher of top. No odors.	Executed C. Card the set the generation consistent with historical or in the his boston. Never, bornotice pump extention retired or in the process of being suggested. When the process of being suggested or being suggested suggested or being suggested or being
4/3/2025, 11:09 am 15/3/2025, 8:35 am EPL 21266 In Situ W EPL Monthly Monitorin 15/3/2025, 8:50 am	EPL58 EPL68 Fater Quality Mag March 2025 EPL69	GTGS groundwater downstream Testangers groundwater downstream West ESSAUREMENTS Testangers groundwater downstream East	20.63 14.56	17.5 55.2 45.3	1.57 5.62 4.52	952	14	6.07 5.99	199 228 231	29	SNL-6 66m. No recent rais, find for weather Water is running clear. The flow of water is continues. To devious oders, Sunny dry weather, PSE works are developing up profess of the flow. SRL colour was orange floige. No clearload of the works developing up partient/full-flow. SRL colour was orange floige. No clearload only. The works developing up partient/full-flowers. Commy for flow.	Reward E. Card the pit are generally considered with holistonic Arms for the holistonic heaver, bornoine jump extendion method is in the pocessor of being upgraded. When the pit is a street of the holistonic range for March 2025. These fall for with current seasonal changes. Low pit and E. Cerd the histonical ranges for March 2025. These fall is with current seasonal changes. This boatoms is suggested of works and therefore representative of landargound conditions. This boatoms is upgradent of works and therefore representative of landargounds conditions.
4/3/2025, 11:09 am 15/3/2025, 8:35 am EPL 21266 In Situ W EPL Monthly Monitorin 15/3/2025, 8:50 am 15/3/2025, 11:46 am	EPL58 EPL68 Fater Quality IM- Ing March 2025 EPL69 EPL70	GTS1 groundwater downstream Testangers groundwater downstream West SEBMINETERS TESTANGERS	20.63 14.56 15.55	17.5 55.2 45.3 45.4	1.57 5.62 4.52	952 22 22	14 14 14	6.07 5.99 6.3	199 228 231 217	2.9 24.1 142	Dist. 6 date. No Invent size, Not dry weather Water is running clear. The flow of water is continuous. No obvious odors, Suriny dry weather. Plift works are developing up gradient of the bore. Dist colour was ownger triage. No obvious odor. Per works developing up gradient/belgicent. County of yellow. Loss of settled orange coloured sediment at bottom of hydro sevene. Cher of top. No odors.	Returned for Card the spir are generally considered with biodistricts when the biocitions (News) promisely prompt prices and the biocitions (News) promisely prompt prices (News) prompt prices (News) prompt prices (News) prices
4/3/2025, 11:09 am 15/3/2025, 8:35 am EPL 21266 In Situ W EPL Monthly Monitorin 15/3/2025, 8:50 am 15/3/2025, 11:46 am	EPL58 EPL68 Fater Quality Mrs March 2025 EPL69 EPL70 EPL72	GTS1 groundwater downstream Testangers groundwater downstream West SEAUNTERMENT Testangers groundwater downstream East Testangers groundwater of countriesm East Testangers groundwater upstream Municip groundwater upstream	20.63 14.56 15.55	17.5 55.2 45.3 45.4	1.57 5.62 4.52	952 22 22	14 14 14	6.07 5.99 6.3	199 228 231 217	2.9 24.1 142	Sixt 6 dam. No recent say, for dry weather Water is numeric clear. The flow of water is continuous. No obvious edors, Soriny dry weather. PSE works are developing up a plant of the laters. Bit colour was owney from the continuous up a plant of the laters. Bit colour was owney from the colour of the works of the store. Bit colour was owney from the colour of the store of the store. Bit colour was owney from the colour of the store of th	Extended C. Card the spir are generally considered with historization section of the his business. Never, bromble jump or extraction method is in the process of being suggested. Leave just and C. Card Hostorization ranges for March 2025. These fail the with current seasonal changes. Leave just and C. Card Hostorization ranges for March 2025. These fail the with current seasonal changes. Leave just and EC. most the historization ranges for March 2025. These fail in the with current seasonal changes. Leave just and EC. most the historization ranges for March 2025. These fail in the with current seasonal changes. Leave just and EC. most the historization ranges for March 2025. These fail in the with current seasonal changes. Leave just and EC. most the historization ranges for March 2025. These fail in the with current seasonal changes. Leave just and EC. most the historization ranges for March 2025. These fail in the with current seasonal changes. Leave just and EC. most the historization ranges for March 2025. These fail is the with current seasonal changes. Leave just and EC. most the historization ranges for March 2025. These fail is the with current seasonal changes. Leave just and EC. most the historization ranges for March 2025. These fail is the with current seasonal changes. Leave just and EC. most the historization ranges for March 2025. These fail is the with current seasonal changes. Leave just and EC. most the historization ranges for March 2025. These fail is the with current seasonal changes. Leave just and EC. most the historization ranges for March 2025. These fail is the with current seasonal changes. Leave just and EC. most the historization ranges for March 2025. These fail is the historization ranges for March 2025. These fail is the historization ranges for March 2025. These fail is the historization ranges for March 2025. These fail is the historization ranges for March 2025. These fail is the historization ranges for March 2025. These fail is the historization ranges for March
4/3/2025, 11:09 am 15/1/2025, 8:35 am EPL 21266 in Situ W EPL Monthly Monitorin 15/1/2025, 8:50 am 15/1/2025, 9:25 am	EPL58 EPL68 Eater Quality Mrs March 2025 EPL69 EPL70 EPL72 EPL73	GTOS groundwater downstream Testangers groundwater downstream West ESSEMENTERIORS Testangers groundwater downstream East Testangers groundwater upotream Marica groundwater upotream	20.63 14.56 15.55 18.1 12.39	17.5 55.2 45.3 45.4 80	1.57 5.62 4.52 4.3 8.55	952 22 22 121 53	14 14 79 35 .	6.07 5.99 6.3 6.49 5.89	199 228 231 217 204	29 24.1 142 68	SINL 6.60m. No recent rap, Not dry weather Water is unking clear. The flow of water is continuous. No devisions oders, Suriny dry weather. PSE works are developing up gradient of the bone. Six stakes a six a range flogs. No devision adors. Pse works developing up gradient/plageant. Some rips rap. Six stakes a six a range flogs. No devision adors. Pse works developing up gradient/plageant. Some rips rap. Six stakes a six a range flogs. No devision adors. Pse works developing up gradient/plageant. Some rips rate and extending a flow of the state of the state.	Reward C. Can dise yet are generally considered with historicate on the historicate history, brondler pump extraction method is in the process of being suggested. When yet and C. Can the historicate largest for March 2025. These fail like with current seasonal changes. Low yet and C. Can the historicate largest for March 2025. These fail may be a supplied on the historicate largest for March 2025. These fail with current seasonal changes. Low yet and C. met the historicat largest for March 2025. These fail on with current seasonal changes. This location is suggested of winds and therefore representative of administration of the suggested of winds and therefore representative of administration of the suggested of winds and therefore representative of the historical product in the EE at al., No control has been decommissioned and relocation. The new location will be sampled in the fail and, No control has been decommissioned and relocated. The new location will be sampled in the following months.
4/3/2025, 11:09 am 15/3/2025, 8:35 am EPL 21266 in Situ W EPL Moonthly Mooiltoria 15/3/2025, 8:50 am 15/3/2025, 9:25 am 18/3/2025, 9:25 am	EPL58 EPL68 EPL69 EPL70 EPL72 EPL33	GTOS groundwater downstream Testangers groundwater downstream West SERVICEMENT Testangers groundwater downstream East Testangers groundwater oformstream Testangers groundwater upstream Munica groundwater upstream Munica groundwater upstream Munica groundwater upstream Unici groundwater upstream Unici groundwater upstream Unici groundwater upstream Unici groundwater upstream	20.63 14.56 15.55 18.1 12.39	17.5 55.2 45.3 45.4 80	1.57 5.62 4.52 4.3 8.55	952 22 22 121 53	609 14 14 79 35	6.07 5.99 6.3 6.49 5.89	199 228 231 217 204	29 24.1 142 68	DNL -6.66m. No recent son, Not dry weather Water is running clear. The flow of water is continuous. No abshous oders, Suriny dry washier. PSE works are developing up gradient of the born. Sociobor was orange rilings. No obvious oder. Par works developing up gradient/udjacent. commy in Your use of well-ned congreg coloured selement at bottom of hybris sleeve. Clear at top, No odors, No. 5.75 %. List but shiftly orange times, clear at top, No odor. Suriner cod dry morning, Sor No. 15.75 %. Sociobor was an experiment of the coder. Suriner cod dry morning, Sor No. 15.75 %. Sociobor was all of subject or top, No odor. Suriner cod dry morning, Sor No. 15.75 %. Sociobor was all of subject or top, No odor. Suriner cod dry morning, Sor No. 15.75 %. Sociobor was all of subject or top, No odor. Suriner cod dry morning, Sor No. 15.75 %. Sociobor was all of subject or top, No. 15 % odors. Sociobor of hydrateness. Base of the bore months to be registered, extracted.	Reward EC and the pit are generally considered with historicate of the historical horizon certified in the posterior before geographic. On the posterior of being upgraded. Low pit and EC met the historical ranges for March 2025. These fail the with current sessional changes. Low pit and EC met the historical ranges for March 2025. These fail the with current sessional changes. This hostoric is suggradered of works and therefore representative of a company of the pit and EC met the historical ranges for March 2025. These fail is the with or correct sensoral changes. This hostoric is suggradered of works and therefore representative of a control on the pit and EC met the historical works and therefore representative of a control on the company mode in the PEE area, this control has been decommissioned and relocated. The new hostoric wall the subshape general to the historical part of the pit and the historical ranges. This hostoric is suggradered of works and therefore representative of analysis and produced and relocated. The new hostoric wall the subshapes generally.
4/3/2025, 11.09 am 15/3/2025, 8:35 am 15/3/2025, 8:35 am EPL 21265 in Situ W EPL 40265, 8:50 am 15/3/2025, 8:50 am 15/3/2025, 9:25 am 19/3/2025, 7:35 am 13/3/2025, 8:26 am	EPLS8 EPLS8 EPLS8 (ater Quality Mix March 2025 EPL89 EPL70 EPL70 EPL72 EPL73 EPL80 EPL80	GTSI groundwater downstream Tantangera groundwater downstream West ESBARTERIOS Tentangera groundwater downstream East Tentangera groundwater downstream Marica groundwater optiteam Marica groundwater optiteam Marica groundwater optiteam Using groundwater optiteam	20.63 14.56 15.55 18.1 12.39	17.5 55.2 45.3 45.4 80 -	1.57 5.62 4.52 4.3 8.55 - 2.29 10.69	952 22 22 22 121 53 	609 14 14 79 35 - 472 518	6.07 5.99 6.3 6.49 5.89 - 6.45 6.68	199 228 231 217 204 - 76 -28	29 24.1 142 68	Dist 6 date. No invent size, Not dry weather Water is running clear. The flow of water is continuous. No obvious odors, Sunny dry weather. PSE works are developing up gradient of the flow. Dist colour was orange ringe. No obvious odor. Pse works developing up gradient/plajecer. Lourny dry dry. Loss of settled conage coloured sediment at bottom of hybra sheen. Cher at logs. No odors. Loss of water conage coloured sediment at bottom of hybra sheen. Cher at logs. No odors. Loss of water colours was a conage coloured sediment at bottom of hybra sheen. Cher at logs. No odors. Loss of water colours was a colour of the colours of hybra sheen. Cher at logs. No odors. Loss of water colours of hybra sheen. Cher at logs. No odors. Loss of water colours of hybra sheen. Cher at logs. No odors. Loss of water colours of hybra sheen. Cher at logs. No odor. Loss of water colours of hybra sheen. Cher at logs. No odor. Loss of water colours of hybra sheen. Loss of water colours of	Reward C. Card they are agreemed your considered with Nationation. Severe, provided pump entantion method is in the process of Severe guigarded. Low part and C. Card the Nationation areas for March 2023. These fail the with Current seasonal Changes. Low part and C. Card the Nationation areas for March 2023. These fail the with Current seasonal Changes. Low part and C. Card the Nationation areas for March 2025. These fail the with Current seasonal Changes. This Societies is suggested of which and Develope representative of a continuous suggested of which and Develope representative of the Societies is suggested or of works and Develope representative of the Societies is suggested or Societies and Card the Response sent in the TEE area, this school has been decommissioned and relocation. The TEE area, this school has been decommissioned and relocation. The TEE area, this school has been decommissioned and relocation. The TEE area, this school has been decommissioned and relocation. The PEE area, this school has been decommissioned and relocation. The PEE area, this school has been decommissioned and relocation. The PEE area, this school has been decommissioned and relocation. The school has been decommissioned and relocation. The school has been decommissioned and school has been decommissioned and relocation. The school has been decommended and the
4/3/2025, 11.09 am 13/3/2025, 8:35 am EPL 21266 in Situ W EPL Montby Monitoria 13/3/2025, 8:50 am 13/3/2025, 9:25 am 13/3/2025, 7:35 am 13/3/2025, 8:26 am 13/3/2025, 7:54 am	EPLSS EPLSS EPLSS And Country March 2025 EPLSS	GTGS groundwater downstream Testangers groundwater downstream Wtot SERVICEMENT Testangers groundwater downstream Utot Testangers groundwater downstream East Testangers groundwater upstream Munica groundwater upstream Munica groundwater upstream Utof groundwater upstream Utof groundwater upstream Utof groundwater upstream Utof groundwater upstream Mit groundwater upstream Mit groundwater downstream Mit groundwater upstream Mit groundwater upstream Mit groundwater upstream	20.63 14.56 15.55 18.1 12.39	17.5 55.2 45.3 45.4 80 - 22.3 106.3 18.7	1.57 5.62 4.52 4.3 8.55 2.29 10.69	952 22 22 121 53 - 717 809 2850	14 14 79 35	6.07 5.99 6.3 6.49 5.89 6.45 6.68 7.08	199 228 231 217 204	127 29 24.1 142 68 72.3 209	Dist 6.6m. No recent son, Not dry weather Water is running clear. The flow of water is continuous. No shahous olders, Suriny dry weather, PSE works are developing up gradient of the Store. Dist colour was compet lings to solvhous older. Pse works developing up gradient/adjacent. John of the store owner of the store of the	Steward E. Card the spir are generally considered with highlicities of the locations. Never, benefits up any extraction method is in the process of Meney sugerable. Low parts and Card the highlight of the highlight of the spiritude of the spir
41/2025, 11:09 am 15/1/2025, 8:25 am EPL 21266 in SHLW W 15/1/2025, 8:25 am 15/1/2025, 8:25 am 15/1/2025, 8:25 am 15/1/2025, 8:25 am 15/1/2025, 7:25 am 15/1/2025, 7:25 am 15/1/2025, 7:25 am	EPLSS EPLGS EPLGS EPLGS EPLGS EPLTS EPLTS EPLTS EPLES EPLES EPLES EPLES EPLES EPLES EPLES	GTSI groundwater downstream Testangers groundwater downstream West ESSENTERINGER Testangers groundwater downstream East Testangers groundwater updrawn Marica groundwater updrawn Marica groundwater updrawn Marica groundwater updrawn Marica groundwater downstream USG groundwater optorawn USG groundwater optorawn USG groundwater optorawn USG groundwater downstream WI groundwater downstream WI groundwater downstream	20.63 14.56 15.55 18.1 12.19	17.5 55.2 45.3 45.4 80 - 22.3 106.3 18.7	1.57 5.62 4.32 4.3 8.55	952 22 22 22 121 53	609 14 14 79 35 . 472 518 1820 485	6.07 5.99 6.3 6.49 5.89	228 228 231 217 204	127 2.9 24.1 142 68 . 72.3 209 23.1	SINL 6.66m. No trecent rais, Not dry weather Water is running clear. The flow of water is continuous. No shahous odors, Sunny dry weather. Put works are developing up gradient of the bore. Six colonia was compact logic. No obvious odors. Put works developing up gradient/judgment. Some dry dry and of effect or our put of effect of our put of effect on the out. The outer of effect of our put of effect our put o	Standard C. Card the spir are generally combined with historical or the historical works of the historical historical process of these pages and the process of these pages and the process of these pages and the process of the pages and the pages of the pages
4/1/2023, 130 am 11/2/2023, 335 am EP. 2/26/203, 335 am EP. 2/26/203, 335 am EP. 2/26/203, 335 am EP. Monthly Monther 13/1/2023, 505 am 13/1/2023, 735 am	EPL58 EPL58 EPL68 EPL69 EPL70 EPL70 EPL70 EPL70 EPL70 EPL80 EPL81 EPL82 EPL83	GROS psycholoxist downstream Textengers groundwater downstream Wist EXEMPLEMENTS Textengers groundwater downstream East Textengers groundwater sportnerm Marica groundwater sportnerm Marica groundwater sportnerm Marica groundwater sportnerm USG groundwater sportnerm USG groundwater sportnerm MF groundwater downstream	20.63 14.56 15.55 18.1 12.39 11.97 15.04 11.76	17.5 55.2 45.3 45.4 80	1.57 5.62 4.52 4.3 8.55 . 2.29 10.69 1.92 4.8	952 22 22 121 53 - 737 809 2850	609 14 14 79 35 - 472 518 1820 485	6.07 5.99 6.3 6.49 5.89 - 6.45 6.68 7.08 6.27	228 231 217 204	241 241 241 241 242 48	SIX. C 65m. No recent rain, find of y weather Water is numing clear. The flow of water is continuous. No obvious odors, Suriny dry weather, PSE works are developing up gradered of the Born. Six colour was comang filings. No obvious odors. The works developing up gradered/anticent. Six colour was comang filings. No obvious odors. The works developing up gradered/anticent. Six colour was comang filings. No obvious odors. The works developing up gradered/anticent. Six colour was comang filings. No obvious odors. The works developing up gradered/anticent. Six colour was considered. Six colour was considered and obvious odors. The works developing up anticent, his file of which was colour and was col	Reserred IC and the per are generally considered with historicate of the his boston. Never, bromble pump enteraction method is in the process of Series guigated. Less per and IC and historicat ranges for March 2025. These fail the with current seasonal changes. Less per and IC most the historicat ranges for March 2025. These fail the with current seasonal changes. Less per and IC most the historicat ranges for March 2025. These fail is the with current seasonal changes. Less per and IC most the historicat ranges for March 2025. These fail is not with current seasonal changes. Less per and IC most the historicat ranges for March 2025. These fail is not with current seasonal changes. Less perison of the control o
4/1/2023, 130 am 13/1/2023, 335 am EP. 23/26/En Situ W EP. Monthly Monitoric 13/1/2023, 525 am	EPLS8 EPLS8 EPLS8 EPLS9 EPLS9 EPLS9 EPLS9 EPLS9 EPLS9 EPLS9 EPLS2 EPLS2 EPLS2 EPLS2 EPLS2 EPLS2 EPLS3	GRS groundwater downstream Textrangers groundwater downstream West EXECUTION TO TEXT AND TE	20.63 14.56 15.55 18.1 12.39 - 13.97 15.04 16.29 16.46 15.36	17.5 55.2 45.3 45.4 80	1.57 5.62 4.52 4.3 8.55 - 2.29 10.69 1.92 4.8 12.45 7.58	952 22 22 121 53	14 14 79 35 472 518 1820 485 510 576 197	6.07 5.99 6.3 6.49 5.89 6.45 6.68 7.08	228 228 231 217 204 - 76 -28 8 59 238 -62 230	127 2.9 2.4.1 1.42 68 - 72.3 2.99 2.9.1 1.66 1.000 1.4.1 6.86	Sixt. C 68m. No recent say, Nord by weather Water is numeric clear. The flow of water is continuous. No obvious edons, Soriny day weather. PSE works are developing up a place of the box. Bit colour was coming flogs. No obvious edon: The works developing up gradient/judjacent. Colour with coming for glass. Bit colour was coming flogs. No obvious edon: The works developing up gradient/judjacent. Colour with some states. The soliton of the placent is not extend to colour gradient. And obvious edon: The works developing up gradient/judjacent. Colour states. No obvious education of the states of the placent. Colour states. No obvious education and was educated to the states. No obvious education for a state of the states. No obvious education for the states of the states. No obvious education is the states of the state. No obvious education is the states of the state. No obvious education is the states of the state. No obvious education is the state. The states of the box looks in the states of the state. So obvious education is the states. So obvious education is the state. The states. So obvious education is the states. So obvious education is the state. The states. So obvious education is the state	Steward E.C. and the yet are generally combined with Notification with the Louisian Steward, provide young entertaking the relative process of Series yang relative to the Series of Series yang relative to the Series of Series yang relative to the Series of Series yang relative with current seasonal changes. Low pit and E.C. met the Notionical ranges for March 2025. These fail the with current seasonal changes. Low pit and E.C. met the Notionical ranges for March 2025. These fail was seen to the Series of Series with current seasonal changes. Low pit and E.C. met the Notionical ranges for March 2025. These fail in with current seasonal changes. Low pit and E.C. met the Notionical ranges for March 2025. These fail is the With Current seasonal changes. Low pit and E.C. met the Notionical ranges for March 2025. These fail is said provided by the Series of Series with Current seasonal changes. Low pit and E.C. met the Notionical ranges for March 2025. These fail is said provided by the Series of Series with Current seasonal changes. Low pit and E.C. met the Notionical ranges for March 2025. These fail is said part of Series with the Series Visionical Conditions. Low pit and E.C. met the Notionical ranges with the Series Visionical Conditions. Low pit and E.C. met the Notionical Range of Series of Series Visionical Conditions. Low pit and E.C. met the P.C. met Series Visionical Conditions. Low pit and E.C. met the P.C. met Series Visionical Conditions. Low pit and E.C. met the P.C. met Series Visionical Conditions. Low pit and E.C. met the P.C. met Series Visionical Conditions. Low pit and E.C. met Series Visionical Conditions. Low pit and E.C. met Series Visionical Conditions for this reporting print vision the Notionical Conditions.
4/3/2025, 130 am 15/3/2025, 130 am 15/3/2025, 130 am EP. 2126/510 Shin, Wa EP. Mortilly Monitorin 15/3/2025, 150 am 15/3/2025, 150 am 15/3/2025, 250 am	EPLSS EP	GTOS proundwater downstream Textrangers groundwater downstream Witel CASACTERNATION Textrangers groundwater downstream East Textrangers groundwater opinism Textrangers groundwater opinism Marica groundwater opinism Marica groundwater opinism Marica groundwater opinism Marica groundwater opinism Mary groundwater opinism Mary groundwater downstream GTOS groundwater downstream GTOS groundwater downstream	20.63 14.56 15.55 18.1 12.39	17.5 55.2 45.3 45.4 80 - 22.3 106.3 18.7 49 124.7 75.9 30.1	1.57 5.62 4.3 8.55 - 2.29 1.069 1.92 4.8 12.45 7.58 3.92	952 22 121 53	14 14 79 35	6.07 5.99 6.3 6.49 5.89 - 6.45 6.68 7.08 6.27 6.4 6.29 6.46	228 231 217 204 - 76 -28 8 59 238 -62 220	127 23 24.1 142 68 - 72.3 299 29.1 166 1000 14.1 6.86	Six Colon vest orange finge. No clinical sections of hydroxy southers. PSE works are developed up and end of between the continuous. The solvhous odors, Suriny dry weathers. PSE works are developed up and end of the born. Six Colon vest orange finge. No clinical section. The works developing up and end (Aplicance, Corong for day. Six Colon vest orange finge. No clinical section. The works developing up and end (Aplicance, Corong for day. Six Colon vest orange finge. No clinical sections of hydroxy between. Clinical final, his clinical sections of the section of the s	Research C. Cod the spir are generally considered with historical research for the location. Never, brondler jump entaction method is in the process of being upgested. When the location Never, brondler jump entaction method is in the process of being upgested. Location of being upgested of the location of being upgested or location or l
4/3/2025, 130 am 15/3/2025, 135 am EP. 3/26/56 Shin Will 15/3/2025, 235 am EP. 3/26/56 Shin Will 25/3/2025, 250 am 15/3/2025, 250 am	EPLSS EPLES EPLES EPLES EPLES EPLES EPLES	GRS groundwater downstream Textrangers groundwater downstream West EXECUTION TO TEXT AND TE	20.63 14.56 15.55 18.1 12.39	17.5 55.2 45.3 45.4 80	1.57 5.62 4.52 4.3 8.55 - 2.29 10.69 1.92 4.8 12.45 7.58	952 22 22 121 53	14 14 79 35 472 518 1820 485 510 576 197	6.07 5.99 6.3 6.49 5.89 6.45 6.68 7.08 6.27	228 228 231 217 204 - 76 -28 8 59 238 -62 230	127 2.9 2.4.1 1.42 68 - 72.3 2.99 2.9.1 1.66 1.000 1.4.1 6.86	Sixt. C 68m. No recent say, Nord by weather Water is numeric clear. The flow of water is continuous. No obvious edons, Soriny day weather. PSE works are developing up a place of the box. Bit colour was coming flogs. No obvious edon: The works developing up gradient/judjacent. Colour with coming for glass. Bit colour was coming flogs. No obvious edon: The works developing up gradient/judjacent. Colour with some states. The soliton of the placent is not extend to colour gradient. And obvious edon: The works developing up gradient/judjacent. Colour states. No obvious education of the states of the placent. Colour states. No obvious education and was educated to the states. No obvious education for a state of the states. No obvious education for the states of the states. No obvious education is the states of the state. No obvious education is the states of the state. No obvious education is the states of the state. No obvious education is the state. The states of the box looks in the states of the state. So obvious education is the states. So obvious education is the state. The states. So obvious education is the states. So obvious education is the state. The states. So obvious education is the state	Research C. Card low part are generated promisions with historical research of the location. Never, brondler pump entactions method in in the process of Series guganised. Low part and C. Cert Most Part Montanciar ranges for March 2025. These fail the with current seasonal changes. Low part and C. Cert Montanciar ranges for March 2025. These fail the with current seasonal changes. Low part and C. Cert Montanciar ranges for March 2025. These fail of the with current seasonal changes. Low part and C. most the historical ranges for March 2025. These fail for with current seasonal changes. Low part and C. most the historical ranges for March 2025. These fail for with current seasonal changes. Low part and C. most the historical ranges for March 2025. These fail in the wild have considered to the control of the control
4/3/2023, 1.10 am 11/3/2023, 1.35 am 11/3/2023, 1.35 am 11/3/2023, 1.35 am 11/3/2023, 1.36 am	EPLSS EPL6S EPL6S EPL6S EPL6S EPL7D EPL7D EPL7D EPL8D	GROS groundwater downstream Testangers groundwater downstream Winst EXEMENTED ST Testangers groundwater downstream East Testangers groundwater upotream Marica groundwater upotream Marica groundwater upotream Marica groundwater upotream Marica groundwater optionam Marica groundwater optionam Marica groundwater optionam Marica groundwater downstream Marica groundwat	20.63 14.56 15.55 18.1 12.39	17.5 55.2 45.3 45.4 80	1.57 5.62 4.32 4.3 8.55 . 2.29 10.69 1.92 4.8 12.45 7.58 3.92 4.44	952 22 22 121 53 737 809 2850 757 799 900 301	609 14 14 79 35 - 472 518 1820 485 510 576 197 34	6.07 5.99 6.3 6.49 5.89 - 6.45 6.68 6.27 6.4 6.27 6.4 6.27	228 228 231 217 204	127 23 241 142 48	Dist. 6.66m. No inscent say, Nord y weather Water is nursing clear. The flow of water is continuous. No dehinous oders, Suriny day weather. PM works are developing up gradient of the bore. Distribute was a mage lings. No devises oder. Phe works developing up gradient/plageant. Some rip vide. Distribute was a mage lings. No devises oder. Phe works developing up gradient/plageant. Some rip vide. Distribute was a mage lings. No devises oder. Phe works developing up gradient/plageant. Some rip vide. Distribute was a mage lings. No devises oders. Phe works developing up gradient/plageant. Some of extending a developing control of the developing of extending a developing control of the bore developing on the developing of extending a dev	Research C. Card the spir are generally considered with historicate of the historical form historical management of the property control form programs of their guigardiest. Low part and C. Card historical ranges for March 2025. These fail the with current seasonal changes. Low part and C. Card historical ranges for March 2025. These fail the with current seasonal changes. Low part and C.C. meet the National ranges for March 2025. These fail for with current seasonal changes. Low part and C.C. meet the National ranges for March 2025. These fail for within current seasonal changes. Low part and C.C. meet the National ranges for March 2025. These fail for within current seasonal changes. Low part and C.C. meet the National ranges for March 2025. These fail for within confliction. Low of the programs of the National Research Confliction. Low of the department of works and therefore representables of hasing-runn confliction. Low of the department of works and therefore man of the sample in the sample in the low of the sample of the sample in the low of the sample of the sam
4/3/2025, 130 am 15/3/2025, 335 am FF 2 2266 in Situ W FF Monthly Montaria 15/3/2025, 535 am 15/3/2025, 535 am 15/3/2025, 525 am 15/3/2025, 526 am	EPLSB EPLSB ERGE GREET Quality Mr. Metch 2025 EPLSP EPLSP EPLSD E	GTSS proundwater downstream Tantanger groundwater downstream West CASAMERTICAL Tantanger groundwater downstream West CASAMERTICAL Tantanger groundwater downstream East Tantanger groundwater opiniteam Mickey groundwater opiniteam Mickey groundwater opiniteam Uid groundwater opiniteam Uid groundwater opiniteam We groundwater downstream Uid groundwater downstream Uid groundwater downstream GTSS groundwater downstream	20.63 14.56 15.55 18.1 12.39	17.5 55.2 45.3 45.4 80	4.52 4.52 4.32 4.3 4.55 	952 22 22 121 53 - 737 809 2850 757 797 900 303 53 193	14 14 79 35	6.07 5.99 6.3 6.49 5.80 6.45 6.68 7.08 6.27 6.4 6.27 6.86 5.84	199 228 221 217 204	1177 2.9 24.1 142 64 6.7 72.3 209 23.1 168 1000 14.1 6.86 56	Sixt. C 68m. No recent say, Nord y weather Water is numery clear. The flow of water is continuous. No obvious odors, Soriny dry weather, PSE works are developing up gradered, Judician of the Boss. Bit colour was arrange flings. No obvious odors. The works developing up gradered, Judician Colours, Soriny dry weather. PSE works are developing up gradered, Judician Colours, Indian of extended orange coloured sediment at lettered flygrin sheen. Clear at top. No odors. The works of the story of the sediment	Reserred E. Card the per law og prevention of the control of the posterior of their guiperfeld. Let the bootstook between, bronder pump extraction method is in the posterior of between guiperfeld. Let up at an eff. card has belanced an agent for March 2025. These fail the with current seasonal changes. Low put and E.C. meet the National ranges for March 2025. These fail the with current seasonal changes. Low put and E.C. meet the National ranges for March 2025. These fail are with current seasonal changes. Low put and E.C. meet the National ranges for March 2025. These fail for within current seasonal changes. Low put and E.C. meet the National ranges for March 2025. These fail is not within current seasonal changes. Low better in specified or works and therefore representables of background conditions. Low Lottook in specified or works and therefore representables of background conditions. Low Lottook in specified or works and therefore with the sample in the specified or works. In the control of the post of the
4/3/2025, 120 am 15/3/2025, 83 am EP. 2/26/50 Shin Will 15/3/2025, 83 am EP. 2/26/50 Shin Will 275 Monthly Montarie 15/3/2025, 83 am 15/3/2025, 23 am 15/3/2025, 74 am 15/3/2025, 24 am 15/3/2025, 84 am 15/3/2025	EPLSS EPLS EPL	GR31 groundwater downstream Testangers groundwater downstream West CASCACTERNAL TESTAND AND TESTAND TESTAND AND TESTAND TESTAND AND TESTAN	20.43 14.56 15.55 18.1 12.39	17.5 55.2 45.4 80 - 22.3 106.3 118.7 49 124.7 75.9 39.1 47 17.4 10.5	1.57 5.62 4.32 4.3 8.55	952 22 22 121 53 	609 14 14 79 35 472 518 1820 485 510 576 197 34 126 62 134	6.07 5.99 6.3 6.40 5.89 6.45 6.65 7.08 6.27 6.4 6.27 6.46 6.27 6.46 6.49 6.49 6.40 6.40 6.40 6.40 6.40 6.40 6.40 6.40	228 221 227 204	127 23 24.1 142 66	Dist. C 65m. No recent say, Nord y washer Water is running clear. The flow of water is continuous. No shahous odors, Sunny dry washer. PSE works are developing up andered the bore. Bit colour was away from the continuous odors. The works developing up andered (algorithm of the bore.) Bit colour was away from the colour of the bore. Bit colour was away from the colour of the bore of the colour of the c	Standard C. Card how pin are generally considered with historical residence for the historical residence for the historical residence for the proposal profession pro
4/1/2025, 110 am 15/2/2025, 130 am EP. 2126/50 Shin W EP. Morethy Monitorin 15/1/2025, 130 am 15/1/2025, 130 am 15/1/2025, 130 am 15/1/2025, 750 am 15/1/2025, 750 am 15/1/2025, 750 am 15/1/2025, 750 am 15/1/2025, 760 am 15/1/2025, 760 am 15/1/2025, 760 am 15/1/2025, 760 am 15/1/2025, 250 am	EPLSS EPLGS EPLGS EPLGS EPLGS EPLGS EPLGS EPLGS EPLGS EPLGS EPLES EP	GR31 groundwater downstream Textrangers groundwater downstream West EXEMPLIANCE STATE OF THE STA	20.61 14.56 15.55 18.1 12.39	17.5 55.2 45.3 45.4 80	137 542 432 431 435	792 22 22 22 22 22 22 22 22 22 22 22 22 2	518 1820 485 510 576 197 34 126 62 124 92	6.07 5.99 6.3 6.49 5.89 6.45 6.66 7.08 6.27 6.4 6.27 6.86 5.84 6.42 5.84 6.42 5.84 6.42 6.42 6.43	228 221 227 204	127 2.9 2.4.1 3.4.2 68	Six Colon vest orange fings, No clinical services in continuous. No shirkous odors, Sunny dry weather PSE works are developing up preferred for born. Six Colon vest orange fings, No clinical services of the born. Six Colon vest orange fings, No clinical services of the born. Six Colon vest orange fings, No clinical services of the born. Six Colon vest orange fings, No clinical services of the born. Six Colon vest orange fings, No clinical services of the born. Six Colon vest orange fings, No clinical services of the services. No clinical services in the services of the services of the services of the services. Six Colon vest orange final services of the services of the services. No clinical services in the services of	Interest C. Card has pin are generally considered with historical restriction related in in the protein of letter guipers. Private private private proteins private private proteins related in the proteins of letter guipers. In the private
4/3/2023, 130 am 13/3/2023, 135 am 52/3/2023, 135 am 52/3/2023, 135 am 52/3/2023, 136 am 13/3/2023, 735 am 13/3/2023, 745 am	EPLSS EPLS EPL	GTS1 groundwater downstream Teatragers groundwater downstream Witel SEMERETERS Teatragers groundwater downstream East Teatragers groundwater openstream Marica groundwater updersom Marica groundwater updersom Marica groundwater updersom Util groundwater updersom Mit groundwater updersom Mit groundwater openstream Mit groundwater downstream GTS1 groundwater downstream	20.03 14.56 14.56 14.56 14.56 14.56 14.51 14.51 14.51 14.51 15.64 15.36 15.23 14.66 15.23 14.69 15.48 15.49	17.5 55.2 45.3 45.4 80 - 22.3 106.3 118.7 49 124.7 75.9 39.1 47 17.4 135.4 10 115.7 116.3	137 542 432 43 43 455	752 22 22 22 22 24 25 25 25 25 25 25 25 25 25 25 25 25 25	609 14 14 79 35 - 472 518 1820 485 510 576 197 34 126 62 134 02 397	6.07 5.99 6.3 6.49 5.89 6.45 6.27 6.4 6.27 6.36 6.42 5.84 6.42 5.84 6.42 6.41 6.43 6.43 6.44 6.44 6.45 6.46 6.46 6.46 6.46 6.46	228 221 217 204	127 23 241 142 48	Six Colon vest orange finge, the devices adort Per works developing up padent/six facety dry works. PM works are developing up padent of the bore. Six Colon vest orange finge, the clevious adort. Phe works developing up padent/six facety dry works. PM works are developing up padent/six facety dry works. PM works are developed up padent/six facety dry works. PM works are developed up padent/six facety dry works. PM works developing up padent/six facety dry many facety dry many facety dry many facety dry facety dry many f	Interest C. Care the sept and generated promotions with historical or the bactors in Version reflected in the process of Series yeagended. Low per a confirm of the historical ranges for March 2025. These fail with process of Series yeagended. Low per a confirm of the historical ranges for March 2025. These fail were with current seasoned changes. Low per a confirm of the historical ranges for March 2025. These fail were with current seasoned changes. Low per a confirm of the historical ranges for March 2025. These fail in the with current seasoned changes. Low per a confirm of the historical ranges for March 2025. These fail has deposed to the confirm of the historical ranges for March 2025. These fail has deposed on the historical ranges for March 2025. These fail has deposed on the historical changes. Low per a confirm of the historical ranges for March 2025. These fail has deposed on the historical condition. The location is aggregated or device and therefore representative of background condition. The location is aggregated or device and therefore representative of background condition. Low per a confirm of the historical ranges of confirm of the historical data for the historical C dealing with results aggregated or device. This location is aggregated or device and therefore representative of background conditions. Location C and the per align with results aggregated or devices the major per align with results aggregated or devices and the historical data for this location data for this location is aggregated with the historical data for this location. All readings are all this work of the historical data for this location. Location C and the per align with results aggregated or discovers the location of the lo
4/3/2025, 130 am 15/3/2025, 133 am 15/3/2025, 133 am 15/3/2025, 133 am 15/3/2025, 135 am 14/3/2025, 136 am 14/3/2025, 136 am 14/3/2025, 136 am 15/3/2025, 136 am 15/3/2025, 136 am 15/3/2025, 252 am 15/3/2025, 252 am 15/3/2025, 253 am	EPLSS EPLSS EPLSS (aster Quality Mich 2025 EPLSS EPLS	GTSS proundwater downstream Tantanger groundwater downstream West EASTERMENT Tantanger groundwater downstream West EASTERMENT Tantanger groundwater downstream Marica groundwater opiniteam Marica groundwater opiniteam Marica groundwater opiniteam Marica groundwater opiniteam Wild groundwater opiniteam Wild groundwater downstream GTS groundwater dow	20:01 14:56	17.5 55.2 45.3 45.4 80	137 542 43 43 43 552 542 44 45 55 1069 132 45 1245 1344 444 14 14 1341 139 442	1932 22 121 131 	609 14 14 79 35 - 472 518 1820 485 510 576 197 34 126 62 1344 92 397 911	6.07 5.99 6.3 6.49 5.89 6.45 6.68 6.27 6.86 5.84 6.42 5.84 6.42 5.92 6.41 6.43 7.06	228 228 221 217 204	1177 2.9 24.1 142 68	Sixt. C 68m. No recent can, for dry warsher Water is nursing clear. The flow of water is continuous. No shahous indom, Soriny dry warsher. PSE works are developing up as leaf of the bare. Bit colour was comage tings. No clearload and on the works developing up gradient/judjacent. Colour with control and eventual particular of the bare. Bit colour was comage tings. No clearload eventual developing up gradient/judjacent. Colour with the colour was control and the colour was control and the colour was colour with the colour was colou	Reserred IC and the per are generally complete with historical to this busion. Severe, brothled pump extention method is in the possion of being upgraded. We provide the period of the
4/3/2025, 130 am 15/3/2025, 133 am 15/3/2025, 133 am 15/3/2025, 133 am 15/3/2025, 135 am 14/3/2025, 136 am 14/3/2025, 136 am 14/3/2025, 136 am 15/3/2025, 136 am 15/3/2025, 252 am 15/3/2025, 252 am 15/3/2025, 252 am 15/3/2025, 253 am	EPLSS EPLSS EPLSS (aster Quality Mich 2025 EPLS9 EPLS9 EPLS9 EPLS7 EPLS2 EPLS2 EPLS2 EPLS2 EPLS2 EPLS2 EPLS3 EPLS9 EPLS	GTS1 psundwater downstream Tantangsa goundwater downstream West EASINGEMENT Tantangsa goundwater downstream West EASINGEMENT Tantangsa goundwater downstream Microia goundwater opisteam Microia goundwater opisteam Microia goundwater opisteam Uitig goundwater opisteam Witig goundwater downstream Off groundwater downstream	20:01 14:56	17.5 55.2 45.3 45.4 80	137 542 43 43 43 552 542 44 45 55 1069 132 45 1245 1344 444 14 14 1341 139 442	1932 22 121 131 	609 14 14 79 35 - 472 518 1820 485 510 576 197 34 126 62 1344 92 397 911	6.07 5.99 6.3 6.49 5.89 6.45 6.68 6.27 6.86 5.84 6.42 5.84 6.42 5.92 6.41 6.43 7.06	228 228 221 217 204	1177 2.9 24.1 142 68	Dist. 6.66m. No recent say, for dry weather Water is running clear. The flow of water is continuous. No shahous odors, Sunny dry weather. PCM works are developing up andered of the flow. Bit colour was arrange florge. No devisors odor. Phe works developing up pallered/adjacent. Size colour was arrange florge. No devisors odor. Phe works developing up pallered/adjacent. Size of wester or weather. Size colour was surrange florge. No devisors odor. Phe works developing up pallered/adjacent. Size of wester or weather. Size colour was surranged. No devisors of the spike is weet. Clear of long, he colours is surranged. Size colours of wester or weather. Size colours of the surranged of surjecture and very orange, floating particles. Nation 1 settled no recent data usuren dipc. Very a suight less at the shorted of hydronic selection. National settled no recent data usuren dipc. Very a suight less at the shorted of hydronic selection. National settled no recent data usuren dipc. Very a suight less at the shorted of hydronic selection. National settled no recent data usuren dipc. Very a suight less that the shorted of hydronic selection. National settled not select the selection of hydronic selection. National settled not selection. National selection of hydronic selection. National selection. National selection of hydronic selection of hydronic select	Interest C. Card how pir any greening component with Nahorica's to this boutcome. Never, brombled purp president method is not they syparated. Low pirs and C. The Management of Manage
4/3/2025, 130 am 15/3/2025, 133 am FP 22266 in Siste W FP Monthly Montant FP 12266 in Siste W FP Monthly Montant In/3/2025, 253 am 15/3/2025, 253 am 15/3/20	EPLSS EPLSS EPLSS EPLSS ESTAGE EPLSS E	CRUS proundwater downstream Tantanger groundwater downstream West EASTACEMENT Tantanger groundwater downstream West EASTACEMENT Tantanger groundwater downstream East Tantanger groundwater opiniteam Microsop groundwater opiniteam West groundwater opiniteam Will groundwater opiniteam Will groundwater downstream Groundwater do	20:03 14:56	17.5 55.2 45.3 45.4 80	137 5.62 43 43 43 8.55 - 2.29 10.09 132 44 114 3.43 - 145 3.41 - 159 4.47 - 1,99 - 1,47 - 1,4	1932 22 121 131 13 13 150 160 173 173 173 174 175 175 175 175 175 175 175 175 175 175	509 14 14 79 35 - 472 518 1820 485 510 576 197 34 126 62 134 92 134 92 137 911 245 - -	6.07 5.99 6.3 6.49 5.89 6.45 6.47 6.27 6.4 6.27 6.46 6.27 6.46 6.27 6.46 6.27 6.46 6.27	199 228 231 217 204	1177 2.9 24.1 142 64 72.3 200 29.1 168 1000 14.1 6.86 96 7.4 100 20.4 77.1 1000 7.4	Size L 65m. No recent say, for dry warsher Water is nursing class: The flow of sater is continuous. No chirdren short, Soriny dry warsher. 75t works are developing up a sheet of the flow. Bit colour was consigning. No chirdren of sater is continuous. No chirdren short, Soriny dry warsher. 75t works are developing up a sheet of the flow. Bit colour was consigning. No chirdren of the flow. Bit colour was consigning. No chirdren of the flow. Bit colour was consigning. No chirdren of the flow. Bit colour was consigning. No chirdren of the flow. Bit colour was consigning. No chirdren of the flow. Bit colour was consigning. No chirdren of the flow. Bit colour was consigning. No chirdren of the flow. Bit colour was consigning. No chirdren of the flow. Bit colour was consigning. Bit colour was consigning. Bit colour was consigning. Bit colour was considered of subject or at typ. No color. Soning cost dry morning. Borr was consist to the required. Bit colour was consistent or subject. Bit colour was consistent	Interest C. Card how pit and generality considered with Nahorica's to this bostonia. Never, brombled pump recision method is a wife up process of being supersided. Low pit and C. Card his hough the Nahorica's ranges for March 2025. These fail use with current seasonal changes. Low pit and C. Card his historica's ranges for March 2025. These fail use with current seasonal changes. Low pit and C. meet the National's ranges for March 2025. These fail for with current seasonal changes. Low pit and C. meet the National's ranges for March 2025. These fail has ground control of the Company of the Company of the Company of the William Control of the Company of t
4/3/2025, 130 am 15/3/2025, 133 am FP 22266 in Sista W FP Monthly Montant FP 22266 in Sista W FP Monthly Montant In 1/4/2025, 12-50 am 15/3/2025, 12-50 am 15/3/2025, 12-50 am 15/3/2025, 22-50 am	EPLSS EPLSS EPLSS (atter Quality Mi y March 2025 EPLS9 EPLS9 EPLS7 EPLS9 EPLS1 EPLS2 EPLS3 EPLS9	GTS1 providuater desenterans Tantanger groundwater desenterans West EASTACEMENT Tantanger groundwater desenterans West EASTACEMENT Maria groundwater desenterans Maria groundwater upitrans Maria groundwater upitrans Maria groundwater upitrans Ust groundwater upitrans Ust groundwater desenterans Vid groundwater monitoring west of the 1 Tratengera emplacement area Developer groundwater monitoring west of the 1 Tratengera emplacement area	20-03 14-56	17.5 55.2 45.3 45.4 80 	137 5.62 43 43 43 855 10.09 102 44 855 124 45 124 45 124 45 124 47 134 14 15 15 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	1932 22 121 131 3 500 2066 733 737 737 800 133 133 155 140 140 140 140 140 140 140 140 140 140	509 14 14 79 35 - 472 518 1820 485 510 576 197 34 128 62 134 92 134 92 134 92 134 92 134 92 134 92 134 92 134 92 134 92 134 92 134 92 134 92 134 92 136 937	6.07 5.99 6.3 6.49 5.80 6.45 6.45 6.47 6.46 6.79 6.86 6.41 6.30 6.31 6.31 6.32 6.43 6.43 6.40 6.45 6.40 6.45	199 228 231 217 204	1177 2.9 24.1 142 64 72.3 200 29.1 168 1000 14.1 6.86 96 7.4 100 100 7.4 2.8 14.4	Six Colon was ownered and in a continuous. The shortest short is series of the Norman State of the Norman	Interest C. Card how pit and greening commission with Nathorizat of the location. Network promoting upon profession method is a time to proceed the programme of the greening commission of the greening commission. The commission of the greening commission of the greening commission of the greening commission of the greening commission. The commission of the greening commission of the greening commission of the greening commission of the greening commission. The commission of the greening commission of the greening commission of the greening commission of the greening commission. The commission of the greening commission of the greening commission of the greening commission of the greening commission. The commission of the greening commission
4/1/2025, 11:00 am 11:0/1/2025, 8:33 am EP. 21266 in Silsu W F. Monthly Montarie 15/1/2025, 8:35 am 15/1/2025, 8:35 am 15/1/2025, 13:46 am 15/1/2025, 7:35 am 15/1/2025, 7:36 am	EPLSS EP	GTG1 groundwater downstream Tantangea groundwater downstream West CASHACETHORIS Tantangea groundwater downstream East Tantangea groundwater downstream East Tantangea groundwater optimizer Ministration groundwater upstream Ministration groundwater upstream Wild groundwater downstream Utility groundwater downstream Wild groundwater downstream Wild groundwater downstream Wild groundwater downstream Wild groundwater downstream Off groun	20-03 14-56	17.5 55.2 45.3 45.4 80 - 22.3 106.3 18.7 49 124.7 75.9 39.1 47 17.4 33.4 19 10.7 11.7 18.2 50.7 53 - 44.7	137 542 432 431 432 433 434 435 1324 448 1324 444 149 149 149 149 149 149 149 149 14	792 22 22 22 22 22 22 22 22 22 22 22 22 2	14 14 179 35	6.07 5.99 6.3 6.49 5.89 6.45 6.68 6.27 6.44 6.79 6.86 6.42 5.84 6.42 5.92 6.41 6.39 6.43 6.43 6.43 6.49 6.49 6.49 6.49 6.49 6.49 6.49 6.49	199 228 231 217 204	1177 2.9 24.1 142 64 72.3 200 29.1 168 1000 14.1 6.86 56 7.4 100 20.4 77.1 1000 7.4 2.8 14.4	Six Colon was owned to the flow of waster's continuous. No obvious adors, Soriny dry waster. PSE works are developing up graders (Anderson Sorin, Soriny dry waster. PSE works are developing up graders). No obvious adors, Soriny dry waster. PSE works are developing up graders (Anderson Sorin, Soriny dry waster. PSE works are developing up graders). And soring dry graders. And soring or graders (Anderson Soring). The waster of the flow of soring dry graders (Anderson Soring). The soring or graders (Anderson Soring) and soring soring dry graders (Anderson Soring). The soring or graders (Anderson Soring). The soring or graders (Anderson Soring) and soring soring dry graderson (Anderson Soring). Soring cond dry morning, Borris to state to be soring. Soring or soring soring dry graderson (Anderson Soring). Soring or soring (Anderson Soring). Soring or soring soring dry graderson (Anderson Soring). Soring or soring soring soring or soring	Interest C. Card how pit and greened your considered with National Act to this location. Never, provincing unper particular to the location Network of Meney superside. Low pit and C. Card his high visit his historical ranges for March 2025. These fail love with current seasonal changes. Low pit and C. meet the National ranges for March 2025. These fail love with current seasonal changes. Low pit and C. meet the National ranges for March 2025. These fail for with current seasonal changes. Low pit and C. meet the National ranges for March 2025. These fail for with current seasonal changes. Low pit and C. meet the National ranges for March 2025. These fail has granted control of the National Ranges for March 2025. These fail has granted control of the National Ranges for March 2025. These fail has granted control of the National Ranges fail has granted control of the National Ranges fail has granted control of the National Ranges fail has granted controlling. The National Ranges fail has granted for March 2025. These fail has granted controlling. The National Ranges fail has granted fail has granted controlling. The National Ranges fail has granted fail has granted controlling. The National Ranges fail has granted fail for the National Ranges fail has granted controlling. The National Ranges fail has granted fail for the National Ranges fail has granted controlling. The National Ranges fail has granted fail for the National Ranges fail fail has granted fail fail fail fail fail fail fail fail
4/3/2025, 120 am 15/3/2025, 833 am 15/3/2025, 833 am 15/3/2025, 833 am 15/3/2025, 833 am 15/3/2025, 835 am 15/3/2025, 535 am 15/3/2025, 735 am 15/3/2025, 736 am 15/3/2025, 736 am 15/3/2025, 736 am 15/3/2025, 736 am 15/3/2025, 134 am 15/3/2025, 135 am	EPLSS EP	GR32 psoundwater downstream Tantangera groundwater downstream West CARRESTANCE Tantangera groundwater downstream West CARRESTANCE Tantangera groundwater downstream Marica groundwater optimism Marica groundwater optimism Marica groundwater optimism Using proundwater optimism Will groundwater optimism Will groundwater optimism Will groundwater downstream GR32 groundwater downstream GR33 groundwater downstream GR33 groundwater downstream GR33 groundwater downstream GR32 groundwater downstream GR33 groundwater downstream GR33 groundwater downstream GR34 groundwater downstream GR35 groundwater downstream GR35 groundwater monitoring west of the Tostragera emplacement area Ouesinge groundwater monitoring east of the Tostragera emplacement area Ouesinge groundwater monitoring east of the Tostragera emplacement area Ouesinge groundwater monitoring east of the Tostragera emplacement area Ouesinge groundwater monitoring east of the Tostragera emplacement area Ouesinge groundwater monitoring east of the Tostragera emplacement area Ouesinge groundwater monitoring east of the Tostragera emplacement area Openinger groundwater monitoring east of the Tostragera emplacement area Openinger groundwater monitoring east of the Tostragera emplacement area Openinger groundwater monitoring east of the Tostragera emplacement area Openinger groundwater emplacement area	20-03 14-56	17.5 55.2 45.3 45.4 80	137 542 432 431 432 433 1366 137 138 138 138 138 138 139 139 144 14 147 143 144 15 144 15 145 15 15 15 15 15 15 15 15 15 15 15 15 15	793 22 22 22 22 22 22 22 22 22 22 22 22 22	609 14 14 79 35 472 518 1820 485 510 576 197 34 126 62 134 92 397 128 120 483	6.07 5.99 6.3 6.49 5.89 7.08 6.47 6.47 6.48 6.42 6.41 6.39 6.38 6.38 6.38 6.38	228 221 217 204 7628 8 59 228 -62 230 252 16 80 202 17 80 202 103 109 222 238 243	1177 233 2441 142 66	Dist. C 60m. No recent say, Nord y weather Water is numeric clear. The flow of water is continuous. No obvious odors, Soriny dry weather, PSE works are developing up select of the born. Bit colour was coming flings. No obvious odors. The works developing up gasterof. And sort. Size colour was coming flings. No obvious odors. The works developing up gasterof. And society colour years consequently of the colour obvious odors. The works developing up gasterof. And society colour years coloured selectioned in betteroof thytos selects. Clear at top. No odors. Not survey weather Size colour was consequently obvious odors. The works developing up of adents/Andiscent. Size survey weather Size. 30,55. 15.7%. Los for hundred or onget tripg, clear at top. No odors. Sonny cord by monning, Born In taction basis. Size. 30,55. 15.7%. Los for hundred or onget tripg, clear at top. No odors. Sonny cord by monning, Born Size. 15. 15.7%. The control of the sonny obors. Size. 15. 15.7%. The control of the sonny obors. Size. 15. 15.7%. The control of the born Size. 15.7%. The control of casing 3. Surface does not see younged 5. Send claimed down, but excelled you can use or purpose 6. Send claimed down, but excelled you can use or purpose 1. Send claimed down, but excelled you can use or purpose 1. Send claimed down, but excelled you can use or purpose 1. Send claimed down, but excelled you can use or purpose 1. Send claimed down, but excelled you can use or purpose 1. Send claimed down, but excelled you can use or purpose 1. Send claimed down, but excelled you can use or purpose 1. Send claimed down, but excelled you can use or purpose 1. Send claimed down, but excelled you can use or purpose 1. Send claimed down, but excelled you	Interest C. Card low pit and generality considered with National Card the process of Severy upgraded. Low pit and C. Card Show pit which the Severy Control of Severy Upgraded on the Severy Upgraded on
4/1/2025, 13:09 am 15/2/2025, 13:35 am 15/2/2025, 13:35 am 15/2/2025, 13:35 am 15/2/2025, 13:35 am 15/2/2025, 13:36 am 15/2/2025, 7:35 am 15/2/2025, 7:35 am 15/2/2025, 7:35 am 15/2/2025, 7:36 am 15/2/2025, 7:36 am 15/2/2025, 7:36 am 15/2/2025, 7:36 am 15/2/2025, 13:36 am 17/2025, 13:36 am	EPLSS EPLSS EPLSS (atter Quality Mi y March 2025 EPLS9 EPLS9 EPLS9 EPLS1 EPLS2 EPLS3 EPLS9	GR31 groundwater downstream Tantangers groundwater downstream Witst SEAMMERTERS II Tentangers groundwater downstream East Tentangers groundwater sportnam Marica groundwater downstream Marica groundwater downstream Marica groundwater downstream Marica groundwater downstream GR31 groundwater downstream GR32 groundwater downstream GR32 groundwater downstream GR33 groundwater downstream GR34 groundwater downstream GR35 groundwater downstream GR35 groundwater downstream GR35 groundwater downstream GR36 groundwater downstream GR37 groundwater downstream GR37 groundwater downstream GR38 groundwater downstream GR39 groundwater groundwater downstream GR39 groundwater groundwater GR39 ground	20.03 14.56 14.56 14.56 14.56 14.56 14.56 14.57 14.56 14.56 14.57 14.56 14.57 14.56 14.57 14.56 14.57 14.57 14.56 14.57 14.57 14.56 14.57 14.57 14.56 14.57	175 552 175 175 175 175 175 175 175 175 175 175	137 542 432 433 435 - 229 1969 132 44 44 14 14 14 14 14 14 14 14 14 14 14	752 22 27 27 27 2111 53	609 14 14 79 35 - 472 518 1820 485 510 576 197 34 126 62 397 911 245 - 30 25 109 83 213	6.07 5.99 6.3 6.49 5.89 - 6.45 6.66 6.27 6.4 6.29 6.46 6.29 6.40 6.30 6.30 6.30 6.30 6.30 6.30 6.30 6.3	199 228 231 217 204	127 23 241 142 68	Dist. C 60m. No recent case, hist of y washer Water is number (see: The flow of washer is continuous. No shahous odors, Sunny dry washer. PSE works are developing up andered of the bore. Six closur was orange floige. No closures odors. The works developing up pastered, fall pastered for bore. Six closur was orange floige. No closures odors. The works developing up pastered, fall pastered for flow flow of washer. The same of the flow of washer flower for the flow of the flower f	Reserred C. Card the spir are greened your considered with Nothcrist or the los boston. Never, brothelp super obstaction method is a wife up posses; of Series youngested. Low part and C. Card the legal to the Nothcrist arranges for March 2025. These fail the with current seasonal changes. Low part and C. Card the Nothcrist arranges for March 2025. These fail the with current seasonal changes. Low part and C. Card the Nothcrist arranges for March 2025. These fail for with current seasonal changes. Low part and C. met the Nothcrist arranges for March 2025. These fail for with current seasonal changes. Low part and C. met the Nothcrist arranges for March 2025. These fail is the Nothcrist arrange of Low part of Low
4/3/2025, 120 am 15/3/2025, 833 am 15/3/2025, 833 am 15/3/2025, 833 am 15/3/2025, 833 am 15/3/2025, 835 am 15/3/2025, 535 am 15/3/2025, 735 am 15/3/2025, 736 am 15/3/2025, 736 am 15/3/2025, 736 am 15/3/2025, 736 am 15/3/2025, 134 am 15/3/2025, 135 am	EPLSS EPLGS EP	GR32 psoundwater downstream Tantangera groundwater downstream West CARRESTANCE Tantangera groundwater downstream West CARRESTANCE Tantangera groundwater downstream Marica groundwater optimism Marica groundwater optimism Marica groundwater optimism Using proundwater optimism Will groundwater optimism Will groundwater optimism Will groundwater downstream GR32 groundwater downstream GR33 groundwater downstream GR33 groundwater downstream GR33 groundwater downstream GR32 groundwater downstream GR33 groundwater downstream GR33 groundwater downstream GR34 groundwater downstream GR35 groundwater downstream GR35 groundwater monitoring west of the Tostragera emplacement area Ouesinge groundwater monitoring east of the Tostragera emplacement area Ouesinge groundwater monitoring east of the Tostragera emplacement area Ouesinge groundwater monitoring east of the Tostragera emplacement area Ouesinge groundwater monitoring east of the Tostragera emplacement area Ouesinge groundwater monitoring east of the Tostragera emplacement area Ouesinge groundwater monitoring east of the Tostragera emplacement area Openinger groundwater monitoring east of the Tostragera emplacement area Openinger groundwater monitoring east of the Tostragera emplacement area Openinger groundwater monitoring east of the Tostragera emplacement area Openinger groundwater emplacement area	20-03 14-56	17.5 55.2 45.3 45.4 80	137 542 432 431 432 433 1366 137 138 138 138 138 138 139 139 144 14 147 143 144 15 144 15 145 15 15 15 15 15 15 15 15 15 15 15 15 15	793 22 22 22 22 22 22 22 22 22 22 22 22 22	609 14 14 79 35 472 518 1820 485 510 576 197 34 126 62 134 92 397 128 120 483	6.07 5.99 6.3 6.49 5.89 7.08 6.47 6.47 6.48 6.42 6.41 6.39 6.38 6.38 6.38 6.38	228 221 217 204 7628 8 59 228 -62 230 252 16 80 202 17 80 202 103 109 222 238 243	1177 233 2441 142 66	Size - C-68m. No recent case, find of y washine Water is number clear. The flow of washer is continuous. No chircles indent, Soriny dry washine. PSE works are developing up as sheet of the blane. Bit colour was coming trigge. No chircles of size of the blane. Bit colour was coming trigge. No chircles of the blane. Bit colour was coming trigge. No chircles of the blane. Bit colour was coming trigge. No chircles of the blane. Bit colour was coming trigge. No chircles of the blane. Bit colour was coming trigge. No chircles of the blane. Bit colour was coming trigge. No chircles of the blane. Other at top, No chircles of the No chircles of the blane. Bit colour was coming trigge. Chircles of the No chircles. Soling particles. Note that survey washer. Bit colour was controlled to shape trigge, cheer at top, No chircles. Soling in the state of the blane. Bit colour was controlled to shape trigge, cheer at top, No chircles. Soling in the blane. Bit colour was controlled to shape trigge. Chiral was shape of the blane. Bit colour was controlled to shape trigge. Chiral washer. Bit colour was controlled to shape trigge. Chiral washer. Bit colour washer. Bit colou	Standard C. Card low pile are generalized consistent with historical related in the location. Never, bromble prompt performs method in other process of being upgraded. Low pile and C. Card his being brown of being upgraded of which 2023. These fail allow with current seasonal changes. Low pile and C. Card historical ranges for March 2023. These fail are with current seasonal changes. Low pile and C. Card the Historical ranges for March 2023. These fail are with current seasonal changes. Low pile and C. Card the Historical ranges for March 2023. These fail are with current seasonal changes. Low pile and C. most the Historical ranges for March 2023. These fail are with current seasonal changes. Low pile and C. most the Historical ranges for March 2023. These fail are with current seasonal changes. Low pile and C. most the Historical ranges for March 2023. These fail are with current seasonal changes. Low pile and C. most the Historical ranges for March 2023. These fail are with current seasonal changes. Low pile and C. most the Historical ranges for March 2023. These fail are with the Low pile and L

Note 1 Water Quality Colyction values for the transapplish flow and Many Watercourse refer to the default trigger values for physical and demand orescons in south-seas autorizal liquided rivers) that are reported in Tables 13.2 and 13.3 of ASSECC/ AMACANC (2008).

Note 2 Water Quality Colyction values for Tablesian Reservoir are the default trigger values for physical and demical designs in south-seas Autorizal (physicher values for transported in Tables 13.2 and 13.3 of ASSECC/ AMACANC (2008).

Note 3 Water Quality Colyction values for groundwater reference the precised values for physical and chemical divisions in south-seas Autorizal (page-values with transport in Tables 13.2 and 13.3 of ASSECC/ AMACANC (2008).

Note 4 Water Quality Colyction values for groundwater reference the default trigger values for physical and chemical divisions in south-seas Autorizal (spatient values for groundwater reference the default trigger values for physical and chemical divisions in south-seas Autorizal (spatient values for groundwater reference the default trigger values for physical and chemical divisions in south-seas Autorizal (spatient values) for groundwater reference the default trigger values for physical and chemical divisions in south-seas Autorizal (spatient values) for groundwater reference the default trigger values for groundwater reference the default trigger values for physical and chemical divisions in south-seas Autorizal (spatient values) for groundwater reference the default trigger values for physical and chemical divisions for groundwater reference the default trigger values for groundwater reference to the default tr

	Monthly EDI Co		owy Hydro 2.0 Main Works March 2025 - Groundwater	_	_									_				_		_	_						_				_				_
	monthly Er C 30	inping, 02-32	HISTORY CHOCHOWATER	EP156	9157	CPLSM	ense.	01.00	6920	69172	09129	CPLRO	O'AN	(NP	(NR)	0107	CP1 MA	(2),09	CD NO.	CD N	(PLSE	(P(9)	CPUS4	D1.95	(Pu6	959	P1302	(Poss	(PUM	ERIOS.	o-uso	FR11M	(PL15)	(PLUS	(PUI)
				0.00	0.00	o-car	Crus	U-Car	000	001	503	Cross	D'UI	l boun	LF GES	trus.	LP CORE	LF CHIP	0.0	DC N	trun.	trem	U-U-	trens	D.Co.	D.C.	UP CANE	trus.	LF LAN	trus.	oun	D-Care	1 000	trem.	to City
Analyte	Unit	sinst of Reporting	Water Quality Objective Value*																																
Physiochemical				493/95	493/25	493/95	15/05/25			18/09/25		19/09/25	19/09/75		19/09/25	19/05/25	19/99/95	19/09/25	4/05/25		4/05/25	4/09/35	4/99/95	4/99/25	4/99/95	4/93/95		15/03/95		15/09/25		20/85/25	20/85/25		39/55/25
pM	per their		458	7.64	3.93	6.87	5.99	63		5.89	-	6.45	6.60	7.06	6.27	5.4	6.79	6.86	5.84	6.42	5.92	6.45	6.30	6.13			-				7.39				
Electrical Conductivity	ati/on		50-350	206	197	952	22	11	121	53	-	737	909	2850	357	797	900	300	53	293	96	207	142	580	1400	177	-	46	40	263	127	327	298	110	132
Oxidation Reduction Potential	m/V		No Water Quality Objective Yolke	187	247	199	238	211	217	354		36	-38		10	288	-42	310	312	14	300	- 10	80	300	161	120		222	238	248	301	-35	-31	328	-17
Temperature	· · · ·		No Worler Quality Objective Yolke	96.12	18-91	20.63	94.56	15.55	18.1	12.39		13:57	15.64	13.76	16.29	15.46	15.36	15.23	18.9	19.39	15.84	16.95	16.67	21.79	18.5	19.46	-	94.7	15.56	16.85	94.79	15.66	15.88	15.71	15.66
Studied Orgen	% saturation		No Water Quality Objective Yolke	15.8	29.6	17.5	55.2	45.3	45.4	90	-	22.3	206.3	18.7	49	124.7	75.9	39.1	47	12.4	35.4	10	15.7	18.2	50.7	53	-	41.7	43.1	46.5	126.5	60.8	97.5	153.7	100.4
Turbidity	NTU		No Noter Quality Objective Yalue	54.2	62.6	127	2.9	24.1	142	69		72.3	209	29.1	258	3000	14.1	6.86	96	7.4	564	350	50.4	79.1	1000	7.4	-	2.6	14.4	15.6	566	327	172	1000	3000
Laboratory analytes											•		•																						\neg
135	meft	5	No Water Quality Digestive Value	16	9	204	-65	25	30	- 15		21	349	215	62	1.530	- 6	20	175	26	194	3.600	86	190	2.100	41		+5	-15	15	153	- 6	2.462	18,300	6.410
Manfines in CaCOS	meth	1	No Water Quality Objective Value	106	105	391	- 41	9	30	11		308	435	1,100	122	181	137	66	16	302	42	100	74	252	559	124		2	9	54	46	201	123	85	29
Noticeta																																			$\overline{}$
America N	un/s	16	11	- 10	40	30	10	10	(10)	435		3/3	110	500	11	10	130	13	10	60	30	63	95	36	141	416		10	90	10	16	60	30	100	30
Nielte - Nieste as N 0404	16/	10	15	50	990	44,400	840	360	132	20	-	122	120	122	10	9.630	122	+33	282	122	40	133	120	29,500	54,100	140		400	260	7300	40	122	- 600	40	122
Dated Nivers Total	100	100	No World Quality Objective Yorker	1900	100	5,900	(100	(100	(100	(100		200	300	400	300	3,400	400	100	1930	100	1100	1130	200	4,400	4 300	1100		1100	200	1,300	r\$.000	1900	r1.000	110,000	15,000
Nitrocan (Total)	100	100	250	<200	1100	50.300	900	200	900	(100		200	300	400	300	13,000	400	100	300	100	(100	4130	308	10.900	58,800	100		206	500	8,900	c1.000	<200	×1.000	V10,000	<5.000
Jescius Phosphorus		1	15	-00	30	(30)	(3)	-00	30	30	-	(33	430	- (33	433	433	33	430	(33	3.5	(33	10	418	435	418	435		100	-00	433	470	(3)	-00	10.	435
Phosphorus (Total)		10	- 2	-00	40	100	60	80	100	40		130	390	80	00	1.100	130	2.2	80	40	70	400	30	110	1.362	110		42	10	60	1100	30	1900	4.540	5.630
Programma Linear	-	_		-	_	- 100	-		100	_	_	- 119	1,00			535									5,000		_				- 100				-
Casside Sand	100		-	- 14		-													-	- 4	-	-				- 4	_	_			- 14			16	$\overline{}$
Deliveries	100	-	_	- 14		- 14	- 14		- 14			- 14	- 11	- 14	- 4			- 0	- 4	- 4	-		- 4	- 0	- "	- 4				- 18	- 0	- 14			
Of and Smale	ma/S	_			11.0		410	410		41.0	_	410			410	410	410			410	410	410			v10		_						410		
Or and Ordan	- mgr-	_	_	41.8	11.0	41.0	41.0	41.0	-018	41.0	-	41.0	-01.0	410	41.0	41.0	41.0	41.0	410	410	-0.0	419	41.0	410	<10	410	_	410	<10	41.0	419	41.0	41.0	<10	410
Watah		_																																	-
Abminism flotafi	se5	- 5	No Water Quality Objective Value	23	1,560	5,306		1.640	1,160	200		-	- 0	- 0	-		- 4			- 0	- 0	- 0	- 0	-		- 0	-	- 0	_	- 0	i i	-		_	_
Aluminium (dissolved)	w/S	_	No Water Conference Vision	- 4	- 4	- 6	45			7	_	-6	- 43	- 4	- 43	- 4	- 4	- 43	- 43	- 4	- 1	- 4	- 43	- 6	- 3	- 4	_	- 43	- 6	- 4	- 0	- 6	- 4	- 13	-4
Arsenic (total)	we/s	62	No World Quality Objective Yalue	-93	3.6	13.0	62	0.5	497		-		-	-	-	-		-	_	_				- 44	-	_	-		-	411	-			- 10	_
Ananic Edisobadh	se/S	62				<0.2				-9.3	_	2.6	25.4	25.2	2.6	0.2	35.1	0.3	49.2	1.4	2.4	2.6	11	6.5	6.2	1.2	_	-0.2	+0.2	-0.3	4.3	-93	0.3	1.0	1.9
Desmise (III-VI folial)	se5	0.2	No Water Quality Objective Value	-9.2	13	18.1	0.4	1.5	- 13		_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	\rightarrow	_	
Oversign (III-VI (disolved)	we/s	6.2		·0.2		0.2	-6.2	+0.2	+9.2	+9.3	_	+0.2	+3.2	+0.2	+0.2	0.6	0.3	+0.2	10.2	+0.2	10.2	16.2	46.2	10.2	6.6	+62		+0.2	62	0.4	162	+3.2	+9.2	102	18.2
Cooper (total)	un's	0.5	No Water Quality Objective Yalue	52	45.1	9.5	-0.5	4.1	29.6		-		-	-	-	-	_	-	_	_				-	-	_	-		-		-		_	-	_
_Cooper i dissolvedi	se5	0.5		22	2.0	-0.5	-0.5	-0.5	4.0	1.0	_	-0.5	-2.5	-0.5	2.4	-2.5	-45	1.9	45.5	-0.5	-0.5	-0.5	-0.5	2.6	1.6	-0.5	_	26.7	-05	-0.5	2.0	-0.5	-2.5	-05	-0.5
Jose Dodati	se/S	2	No Water Quality Objective Value	18	1400	30,790	175	529	2,580	_	_	_	_			_	_		_			_	_							_	_	_		_	_
iron (dissolved)	we/s	2		43	- 42	- 0	- 62	- 1	-0	- 42	_	- 0	1.835	2.830		- 42	822	2	+2	386	- 12	- 0	+2	- 0	+2	+2		+2	- (2	- 42	-0	61	-0	+2	3332
Lead hotals	se/S	61	No Water Quality Objective Yalve	01	5.2	92.9	0.1	0.8	1.4	-	-	-		-	-						-	-	-	-					-	-		-		-	
Janet Schmidterell	105	0.1	-	+0.1	-0.1	0.1	-0.1	-0.1	-0.1	-0.1	_	481	<0.1	41	-0.1	-0.1	481	48.1	48.1	41.1	0.1	-0.1	48.1	40.1	-01	-0.1	_	48.1	-01	-0.1	-0.1	+2.1	-0.1	-01	48.1
Manager (total)	w/S	0.5	No Water Quality Objective Value	14.6	212	329	3.8	24.6	53.6																										
Maneanese (dissolved)	un's	0.5	1,390	13.6	61.2	37.3	1.4	2.5	2.7	4.6		174	211	362	40.4	54.4	151	3.1	5.9	562	45.0	155	352	558	6.6	415		6.6	3.3	15.0	52.3	364	467	114	395
Nickel (total)	se/S	0.5	No Water Quality Objective Value	-0.5	5.4	29.8	0.6	12	1.4								-		-										_					-	-
Nobel Ideastreet	M/S	0.3		-0.1	-0.1	1.4	-0.1	-0.1	-23	0.9		16.1	2.1	0.9	6.3	1.7	2.6	1.1	2.2	0.8	1.4	1.2	3.3	- 11	1.2	2.7		48.5	103	4.0	-0.3	633	+2.1	103	1.9
Silver Itatali	un/s	0-91	No Water Quality Objective Yalve	+0.21	+0.25	0.96	+0.01	0.84	+0.21																								-		
Silver Idissolvedi	ser's	0.21	0.00	+931	49.21	+0.81	-031	+0.81	+931	+0.21		<0.01	+0.81	+9.01	<0.81	<0.01	<0.01	<0.61	-2.0t	-0.01	<0.05	<0.05	<0.05	<0.05	-101	41.00		48.00	-0.81	-0.81	41.00	<0.01	+0.81	<0.05	<0.00
Zinc hotal)	se/S	1	No Water Quality Objective Value	6	24	- 6			- 1																								-		
Zinc (disselved)	105		2.4	1	- 4	4	2	2	- 4	4		4	2	1	2	-1	4	+3	ă.	- 13	6	- 4	4	19	- 6	26		-15	- 6	54	- 1	d	-61	-	- 4

Snowy Hydro 2.0 Main Works Monthly EPL Sampling: 01-31 March 2025 - Talbingo and Tantangara Reservoir

Analyte	Unit	Limit of Reporting	Water Quality Objective Value*
Field			
pH	pH Unit		6.5-8
Electrical Conductivity	μS/cm		20-30
Oxidation Reduction Potential	mV		No Water Quality Objective Value
Temperature	°C		No Water Quality Objective Value
Dissolved Oxygen	% saturation		90-110
Turbidity	NTU		1-20
Laboratory analytes		î	
Total suspended solids	mg/L	5	No Water Quality Objective Value
Hardness as CaCO ₃ (filtered)	mg/L	1	No Water Quality Objective Value
Nutrients		î	
Ammonia as N	μg/L	10	10
Nitrite + Nitrate as N (NOx)	μg/L	10	10
Kjeldahl Nitrogen Total	μg/L	100	No Water Quality Objective Value
Nitrogen (Total)	μg/L	100	350
Reactive Phosphorus	μg/L	1	5
Phosphorus (Total)	μg/L	10	10
Inorganics	i	i —	
Cyanide Total	μg/L	4	7
Hydrocarbons		î	
Oil and Grease	mg/L	1	5
Metals			
Aluminium (dissolved)	μg/L	5	55
Arsenic (dissolved)	μg/L	0.2	13
Chromium (III+VI) (dissolved)	μg/L	0.2	1
Copper (dissolved)	μg/L	0.5	14
Iron (dissolved)	μg/L	2	300
Lead (dissolved)	μg/L	0.1	3.4
Manganese (dissolved)	μg/L	0.5	1,900
Nickel (dissolved)	μg/L	0.5	11
Silver (dissolved)	μg/L	0.01	0.05
Zinc (dissolved)	μg/L	1	8
Biological			
Faecal Coliforms	CFU/100mL	1	10/100^
Biochemical Oxygen Demand	me/L	2	1/5^

EPL10	EPL11	EPL28	EPL29	EPL32	EPL38	EPL39	EPL40	EPL46	EPL51	EPL107	EPL108	EPL10
2/3/25	2/3/25	26/3/25	26/3/25	26/3/25	1/3/25	9/3/25	9/3/25	26/3/25	26/3/25	16/3/25	16/3/25	16/3/2
8.1	8.01	7.82	8.42	8.18	7.94	6.34	8.95	8.5	8.43	7.79	7.72	7.77
102	63	27	26	26	36	29.6	31.7	26	26	40	38	36
191	192	130	140	14	174	664.1	625.5	139	140	193	190	180
22.97	22.84	18.43	20.14	20.19	22.63	17.6	16.5	20.29	20.21	22.01	21.97	21.7
64.8	70.6	93.2	95.5	91.5	54.1	62.1	75.3	97.1	93.8	72.6	67.8	75.6
1.61	1.15	7.3	13.4	12.9	8.8	7.17	2.63	12.5	10.7	0.76	0.85	0.66
<5	<5	<5	<5	<5	<5	<5	<5	<5	5	<5	<5	<5
46	28	9	9	9	9	13	16	9	9	14	14	14
<10	<10	70	<10	<10	20	30	140	90	<10	<10	40	20
<10	<10	10	<10	<10	<10	290	20	10	<10	<10	10	<10
100	100	300	400	400	300	100	200	300	400	100	100	100
100	100	300	400	400	300	400	200	300	400	100	100	100
<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
20	10	20	30	30	20	<10	<10	40	30	20	20	10
<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.5
<5	<5	12	9	11	40	26	19	10	10	<5	<5	<5
0.7	0.5	0.4	0.4	0.4	0.4	0.2	<0.2	0.4	0.4	0.3	0.4	0.4
<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
20	6	141	90	92	218	98	89	96	91	4	3	3
<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
<0.5	<0.5	0.6	<0.5	<0.5	1.7	3.4	3.4	0.5	<0.5	<0.5	<0.5	<0.5
<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.0
<1	<1	<1	4	<1	<1	<1	<1	<1	4	<1	<1	<1
75	230	7	-	-	-	-	-	-	5			-
4	3	3		-	-	-		-	2	-		

Water Quality Objective values for Tablingo and Tantangara Reservoir refer to the default trigger values for physical and chemical stressors in south-east Australia (fresh lakes and reservoirs) for the protection of 95% of aquatic species ANZECC / ARMCANZ (2000), they are not pollutant limits imposed by ER 21266.

** Algal Blooms can present as feaci coliforms

** Objob percentic concentration limits / 200 percentile concentration limits

** Sample not required at this location.

Spours Hadro 2 O Majo Works

Monthly Analyse			owy Hydro 2.0 Main Works tarch 2025 - Surface Water																																			
Analyte																																						
	Unit	Limit of Reporting	Water Quality Objective Value*	IPCS .	EPGS	EPCE	(PO	EPC12 E	PLSA EP	115 691	26 691	24 EPC26	69127	EPLBO	(PGS	oca	РСМ	IPLIS .	EPC36	EPG27	EPES2	(PG)	EPCSI	EPUSS	EPGEP	EP171	SPUB4	PUS	EPUB6	EPCH	EPC99	EPL100	(PLIE	EPC106	EPC110	EPL118	EP1120	EPC122
Feld				340025	1/91/25	1/03/25	3/03/25	1/01/25 1/	03/05 3/0	M25 M0	105 7/0	/25 10/01/0	5 18/03/2	5 1/03/25	1/80/25	1/81/25	1/03/25	1/09/25	6/91/25	M00/25	4/03/05	Ony	Ony	Ony	Ony	On	13/03/25	13/13/25	13/03/05	One	18/03/25	Ony	Onr	\$0/25	Ony	Dry	Ony	7/01/05
get .			654	8.02	7.9	7.86	8.14	8.06	7.99 8	05 8.	25 6	7 7.86	8.23	6.89	7.12	7.23	8.19	7.87	7.29	7.35	9.21	Dry	Ony	Dry	Dry	Dry	9.29	8.85	8.67	Dry	10.45	Ory	Ory	7.66	Dry	Dry	Dry	7.86
Electrical Conductivity	u5/on		30-350	219	123	221	177	172	166 1	70 1	75 12	70 37	36	40	32	31	48	40	52	54	863	Ony	Ony	Ony	Dry	Dry	966	561	1130	Dry	511	Ory	Ory	1379	Dry	Dry	Dry	539
Oxidation Reduction Potential	my		No Water Quality Objective Value	90	138	139	146	101	121 1	25 1	17 L	4 190	164	298	285	239	136	155	136	145	93	Ony	Ony	Ony	Dry	Dry	115	129	147	Dry	59	Ory	Ony	196	Ony	Dry	Dry	123
Temperature	70		No Water Quality Objective Value	17.93	16.42	21.61	20.07	17.47	7.39 13	.77 22	.66 18	43 11.96	11	13.43	13.5	17.83	12.18	11.71	16.06	15.75	23.49	Ony	Ony	Ony	Dry	Ony	28.62	23.51	27.8	Dry	12.29	Ory	Ony	21.14	Ony	Dry	Dry	17.55
	Karbertine		20.110	88.4	65.5	68.7	756	66.2	07.4 7	1.5	12 67	1 762	71.2	51.4	65.6	65.3	66.3	68.8	18.2	63.2	80.4	Dry	Dry	Dry	Div	Dov	128.5	56	80.4	Dry	65.5	Dry	Dry	101.9	Dry	Dry	Dry	28.8
Turbidity	NTV		125		3.7	44	10.1	1.6	33	7 3	1 0	4 53	7.65	3.1	8.8	15.2	71.0	14.9	7.8	9.2	47.1	Dry	Dry	Dry	Dry	Do	792	1000	56.5	Dry	170	Dry	Div	20.8	Dry	Dry	Dry	100
Laboratory analytis						-		-					-	-	-							-	-	-													-	
TSS Handness as CaCOS	mg/L	5	No Water Quality Objective Value	7	-6	-65	45				5 4						15	45	-6	-65	24	Dry	Ony	Ony	Dry	Dry	225		26		72		Ory	6	Dry	Dry	Dry	
Hardness as CaCOS	mg/L	1	No Water Quality Objective Value	212	60	90	92	17	85	5 1	5 X	0 18	18	13	13	9	16	16	17	17	260	Dry	Dry	Dry	Dry	Dry	44	31	217	Dry	198	Ony	Dry	420	Dry	Dry	Dry	86
Publishes																																						
Ammonia as N	Page 1	10	13	30	90	20	410				10 1		430		410	20	80	30	20	20	390	Dry	Dry	Dry	Dry	Dry	30	50	20	Dry	130	Ory	Dry	<10	Dry	Dry	Dry	70
Nitrite + Nitrate as N (NOx)	Pass	10	15	+10			20			0 2					410	10	+30	+10	20	10	38,100	Dry	Ony	Ony	Dry	Dry	2,140	5,520	11,900	Dry	6,310	Ony	Ony	43,500	Dry	Dry	Dry	9,180
Kjeldahi Nitrogen Tatal	Age.	100	No Water Quality Objective Value	4100							00 5,1						400	300	100	300	7,000	Dry	Dry	Dry	Dry		800	1,400	1,700		1,300	Dry	Dry	50,000	Dry	Dry	Dry	400
Nitrogee (fotal) Reactive Phosphorus	Age.	100	250	<100			<100			00 d	00 66,				<300 120	300	400	300	100	100	45,100	Dry	Dry	Dry	Dry	Dry	2,900	6,900	13,600	Dry	8,600 130	Ony	Dry	50,100	Dry	Dry	Dry	9,600
Phosphorus (Total)	Age.	- 1	15 20	410		130	410			0 1	0 2				20	20	430	110	430	410 N0	410	Dry	Ony	Dry	Dry	Doy	130	160	410	Dry	130	Dry	Dry	20	Dry	Dry	Dry	490 200
inorganics	PER	10		10	30	39	49	98	30	9 3	0 /	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	40	150	- 71	- 69	40	130	4)	30	30	ury	ury	ury	urj	uy	130	100	70	Ury	130	ury	ury	20	uy	ury	ury	200
Cuantle Total	P@N		4	- 4		ot	et	24	et .	4 4	4 4	1 5	- 08	ot	-01	-08	ot	et	- 08	-01	ot	Dry	Ony	One	Dry	- One	-01	46	ot	Dry	et	Ony	Onr	- 44	Dry	Dry	Dry	
tehniation	100	_		-	-		-								-					-							-											
Of and Grease	mg/L	- 1	5	110	11.0	11.0	110	11.0	(1.0 T (10 11	10 11	0 41.0	(1.0	11.0	+1.0	<1.0	(1.0	110	11.0	110	110	Dry	Dry	Dry	Dry	Dov	110	11.0	11.0	Dry	11.0	Ony	Dry	11.0	Dry	Dry	Dry	11.0
the state of the s																																						$\overline{}$
Aluminium (total)	Zas		No Water Quality Objective Value																		166	Dry	Dry	Dry	Dry								-		-			
Aluminium (disselved)	PRA.	- 5	27	- 6	- 6	- 6	- 6	6	6 .	5 4	5 4	6 6	- 6	11	12	24	16	15	26	23	- 6	Dry	Dry	Doy	Dry	Dov	29	19	- 5	Dry	65	Onv	Onr	- 6	Dry	Dry	Dry	- 6
Arsenic (total)	PE/L	0.2	No Water Quality Objective Value																		6.6	Ony	Ony	One	Dry													
Arsenic (dissolved)	Age.	0.2	0.8	0.7	0.3	0.7	0.6	0.7	07 0	7 0	7 0	4 40.2	40.2	-0.2	40.2	0.4	0.2	6.2	0.1	0.6	-02	Dry	Dry	Dov	Dry	Dov	20.5	21.9	6.2	Dov	1.4	Dry	Dov	2.3	Dry	Dry	Dry	0.3
Chromium (B+V(-)utal)	Pg/L	0.2	No Water Quality Objective Value																		1.5	Dry	Ony	One	Dry													
Chromium (H+VE)(dissolved)	Asse	0.2	0.81	+9.2	+9.2	+0.2	+9.2	49.2	-0.2	12 4	12 0	4 0.3	0.3	40.2	49.2	40.2	+0.2	49.2	+0.2	+9.2	0.2	Ony	Ony	One	Dry	Ony	8.6	15.6	9.3	Ony	76.6	Ony	One	2.1	Dry	Dry	Dry	+0.2
Copper (total)	Age.	0.5	No Water Quality Objective Value																		0.8	Dry	Dry	Dry	Dry													
Copper (dissolved)	PB/L	0.5	1	42.5	49.5	<0.5	<0.5	43.5	O.5 <	3.5 41	15 40	5 40.5	40.5	40.5	42.5	40.5	40.5	<0.5	40.5	<0.5	40.5	Dry	Dry	Dry	Dry	Dry	4.0	1.8	6.8	Dry	0.7	Dry	Dry	10.5	Dry	Dry	Dry	40.5
iron (tetal)	PRA.	2	No Water Quality Objective Value							_											132	Dry	Ony	Ony	Dry													-
iron (dissolved)	Pg/	2	300		22	- 11	12	6		, ,	3	22	15	46	35	145	213	221	324	269	a	Dry	Dry	Dry	Dry	Dry	27	36	a	Dry	- 5	Dry	Dry	- 4	Dry	Dry	Dry	4
Lead (total)	79 ¹	0.1	No Water Quality Objective Value	_		-		-		_	_	-			-	-	-	-	-		0.1	Dry	Ony	Dry	Dry	-	-	-	-	-	-	-	_	-	-		-	
Lead (dissolved)	rg/L	9.1	1	49.1	<9.1	+9.1	-91	42.1	91 -	23 4	11 4	1 491	49.1	49.1	-2.1	49.1	49.1	49.1	-0.1	<0.1	0.1	Ony	Ony	Ony	Dry	On	<2.1	49.1	49.1	Ony	49.1	Ony	0nr	10.1	Ony	Dry	Cry	-0.1
Manganese (total)	rg/t	0.5	No Water Quality Objective Value L 200		14	-			0.1	_			- 11	- 11		. 0.0	-		417		2.9	Dry	Ony	Dry	Dry		. 0.8	-0.5	(0.5	-	-0.5		-	40.5	-		-	
Manganese (dissolved)	ANA VAN	0.5	No Water Quality Objective Value	0.6	2.4	1.5	5.0	0.8	O.E	5 2	9 2	5 5.2	2.8	1.5	2.0	0.9	11.8	5.6	43.2	0.8	403	Dry	Dry	Dry	Ony	Dry	0.8	<0.5	40.5	Dry	42.5	Dry	Dry	40.7	Dry	Dry	Dry	-0.5
Nickel (Standard)		0.5	no water upwery Objective Value	40.5	105	105	+0.5	405	05 0	25 #	15 2	2 405	105	105	e0.5	105	105	100	105	105	105	Dry Dry	Ony	Ony	Dry	On	12	0.6	0.6	Dry	10.5	One	One	1.9	Onv	Dev		105
	Ass	0.5	No Water Quality Objective Value	43.5	<0.5	+0.5	95	60.5	93 4	13 4	10 2	40.5	40.5	40.5	<0.5	40.5	40.5	40.5	40.5	40.5	40.5	Dry	Ony	Ony Dry	Ony	UNY	1.2	U.S	116	Ury	41.5	UNY	UNY	4.9	DIV	Dity	Dry	40.5
Sher (doubed)	/asc	250	No Water Quality Objective Value	4100	-0.04	-0.01	-0.00	-0.04		01 0			-0.01	-0.01	-0.00	-0.04	-0.01	-0.00	40.01	-0.01	40.01	Dry	dry	uky	Dry	-	-0.04	-0.01	-0.01	-	-0.01	- One	_	10.01		-	for	40.01
Zinc (bitched)	Age.	ozt	No Water Quality Objective Value	400	40.81	991	42.01	9.55	OH d	21 40	10 0	9.0	498	400	49.00	93.05	odi.	42.01	9.6	42.03	401	Ony One	Ony	Ony	Dry	100	40.66	- edit	401	DY.	42.05	277	ON.		207	Sty	STY	9.0
Zac (duck)	Age.		No Water quality objective value	-		d		-				el.	el.	-		- 1	-	- 1	- 1	el.	- 2	Ony Ony	Ony	Ony	Dry	- Am	- 1	- 1		Dry		One	One	4	Onv	One	Onv	
and justicessoy	PRICE	-			- 4	- 4	-4	-	*	- 1 -		1 4	- 4	-		- 4	-1	- 1	- 14	- 14	-1	Jy	Jay	Jay	-4	- 49	- 4	-	- 4	- 49	- 4	Jy	J. S.		wy	Jey	wy	

Monthly EPL Sampling: 01-31 March 2025 - Discharge Water

Analyte	Unit	Limit of Reporting	Water Quality Objective Value*
Flow Rate			
Inflow*	ML/day	-	-
Outflow*	ML/day	-	4.32 (EPL 43 / 50)
Field			
pH	pH Unit	-	6.5-8.5
Electrical Conductivity	μS/cm	-	700 (EPL 41) / 200 (EPL 50)
Oxidation Reduction Potential	mV	-	No Water Quality Objective Value
Temperature	*c	-	15
Dissolved Oxygen	% saturation	-	No Water Quality Objective Value
Turbidity	NTU	-	<25
Laboratory analytes			
Total suspended solids	mg/L	5	5/10
Hardness as CaCO ₃ (filtered)	mg/L	1	No Water Quality Objective Value
Nutrients			
Ammonia as N	μg/L	10	200/2000^
Nitrite + Nitrate as N (NOx)	μg/L	10	10
Kjeldahl Nitrogen Total	μg/L	100	No Water Quality Objective Value
Nitrogen (Total)	μg/L	100	350/-^
Reactive Phosphorus	μg/L	1	No Water Quality Objective Value
Phosphorus (Total)	μg/L	10	100/300^
norganics			
Cyanide Total	μg/L	4	No Water Quality Objective Value
Hydrocarbons			
Oil and Grease	mg/L	1	2/5^
Metals			
Aluminium (dissolved)	μg/L	5	55
Arsenic (dissolved)	μg/L	0.2	13
Chromium (III+VI) (dissolved)	μg/L	0.2	1
Copper (dissolved)	μg/L	0.5	14
Iron (dissolved)	μg/L	2	300
Lead (dissolved)	μg/L	0.1	3.4
Manganese (dissolved)	μg/L	0.5	1,900
Nickel (dissolved)	μg/L	0.5	11
Silver (dissolved)	μg/L	0.01	0.05
Zinc (dissolved)	μg/L	1	8
Biological			
Faecal Coliforms	CFU/100mL	1	10/100^
Biological Oxygen Demand	mg/L	2	5

EPL 41	EPL 43	EPL 44	EPL 45	EPL 47	EPL 48	EPL 49	EPL 50
16/03/2025							12/03/202
-	0.0000	0.2650	0.0512	0.2177	0.0970	0.7472	-
-		-	-	-		-	-
7.84	-	-	-	-	-	-	7.92
6	-	-	-	-	-	-	18.6
507	-	-	-	-		-	701
25.15	-	-	-	-	-	-	16.1
73.6	-	-	-	-	-	-	55.2
0.9	-	-	-	-	-	-	0.53
<5	-	-	-	-	-	-	<5
<1	-	-	-	-		-	<1
40	-	-	-	-	-	-	<10
100	-	-	-	-		-	<10
<100	-	-	-	-	-	-	<100
100	-	-	-	-	-	-	<100
<10	-	-	-	-	-	-	<10
<10	-	-	-	-	-	-	10
		•				•	
<4	-	-	-	-	-	-	<4
<1.0	-	-	-	-	-	-	<1
						•	
<5	-		-	-	-	-	<5
<0.2	-		-	-	-	-	<0.2
<0.2	-		-	-	-	-	<0.2
<0.5	-		-	-	-	-	<0.5
<2			-	-		-	<2
<0.1	-		-	-	-	-	<0.1
<0.5	-		-	-	-	-	<0.5
<0.5	-		-	-	-	-	<0.5
<0.01			-	-		-	<0.01
<1			-				<1
11.00	-	-					<1
<2	-	-	-	-			<1

Note: Treated water was not being discharged at Talbingo Reservoir at the time of EPL sampling.

There is no 100th percentile limit for Nitrogen (Total).

* Water Quality Objective values Treated Water reference the predicted values for physical and chemical stressors from the treatment plant as presented in the Main Works EIS.

- Samples not required

* 90 Percentile concentration limit/100 Percentile limit

Inflows to STP and CWTP do not directly correspond to outflow at RO as much of the water is reused on site

Snowy Hydro 2.0 Main Works Monthly EPL Sampling: 01-31 March 2025 - Volumes

Date
1/03/2025
2/03/2025
3/03/2025
4/03/2025
5/03/2025
6/03/2025
7/03/2025
8/03/2025
9/03/2025
10/03/2025
11/03/2025
12/03/2025
13/03/2025
14/03/2025
15/03/2025
16/03/2025
17/03/2025
18/03/2025
19/03/2025
20/03/2025
21/03/2025
22/03/2025
23/03/2025
24/03/2025
25/03/2025
26/03/2025
27/03/2025
28/03/2025
29/03/2025
30/03/2025
31/03/2025
Water not discharged on this day

EPL 43 *	EPL 50 ^
	e volume alitres)
-	-
0.44	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
0.20	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
0.12	-
0.57	-
-	-
0.38	-
1.14 0.27	- 0.72
0.27	0.73
-	0.63
14.85	0.28
0.39	0.28
0.39	-

EPL 44	EPL 45	EPL 47	EPL 48	EPL 49
	Discharg	e volume (M	egalitres)	
0.14	0.06	0.16	0.12	0.62
0.15	0.06	0.20	0.05	0.52
0.15	0.07	0.21	0.08	0.71
0.15	0.06	0.20	0.24	0.86
0.11	0.04	0.22	0.08	0.79
0.12	0.04	0.21	0.09	0.75
0.15	0.05	0.21	0.08	0.76
0.22	0.03	0.23	0.09	0.79
0.16	0.04	0.21	0.09	0.69
0.21	0.07	0.18	0.08	0.86
0.13	0.03	0.20	0.09	0.59
0.13	0.05	0.18	0.08	0.53
0.13	0.05	0.20	0.07	0.83
0.73	0.05	0.20	0.09	0.92
0.42	0.04	0.20	0.07	0.98
0.49	0.06	0.17	0.01	0.68
0.41	0.07	0.29	0.07	0.52
0.42	0.07	0.23	0.16	0.87
0.40	0.06	0.25	0.04	0.72
0.42	0.06	0.25	0.06	0.64
0.28	0.03	0.19	0.06	0.58
0.24	0.04	0.20	0.06	0.78
0.39	0.06	0.20	0.01	0.73
0.24	0.04	0.22	0.04	0.76
0.25	0.04	0.22	0.08	0.81
0.16	0.05	0.23	0.25	0.52
0.28	0.05	0.22	0.08	0.83
0.13	0.04	0.24	0.08	0.83
0.24	0.05	0.21	0.17	0.50
0.30	0.05	0.21	0.16	0.67
0.21	0.05	0.21	0.17	0.78

Note: The EPL discharge volume limit for EPL 43 and 50 is 4.32 megalitres per day. Compliance with this criteria was met during the reporting month.

- * The maximum flow rate capacity for Lobs Hole STP/PWTP during the reporting month was 8.45 L/s
- ^ The maximum flow rate capacity for Tantangara STP/PWTP during the reporting month was 11.34 L/s
- -- Water not discharged on this day

Water not discharged on this day

EPL 21266 In Situ W EPL Monthly Monitori	ing April 2025	esserences .										
Table 1 - Surface Water	Quality Data		Temp (°C)	DO (%)	DO (mg/L)	Water Qualit EC (uS/cm)	y Objectives (see no TDS (mg/L)		Redox (mV)	Turbidity (NTU)		
				90 - 110	(30 - 350		6.5 - 8.0		2 - 25		
ate and Time	EPL Site ID	Location Description	Temp (°C)	DO (%)	DO (mg/L)	EC (µS/cm)	TDS (mg/L)	pH	Redox (mV)	Turbidity (NTU)	Field Comments	Context
1/4/2025, 9:22 am	EPL5	Yarrangobilly River, upstream of the exploratory tunnel and construction pad	12.21	92.3	9.89	150	98	8.14	173	3.83	Clear day, no recent rain. Flow and water level average. Low turb. No odours. No unusual algae growth.	Results align with historically recorded data, and seasonal cha time of sampling.
1/4/2025, 10:02 am	EPL6	Wallaces Creek, upstream of Yarrangobilly River and Wallaces Creek confluence	12.56	96.7	10.29	127	83	8.09	173	0.59	Clear day. No recent rain. Water level and flow average. No odour or unusual algal growth.	The results in this location is indicative of data recorded histo The changes occurred in temperature and flow is in alignmen seasonal change.
1/4/2025, 11:35 am	EPL8	Yarrangobilly River, downstream of Lick Hole Gully	16.69	89.3	8.69	153	99	8.18	175	0.86	Clear day. Average flow and water level. No odour or unusual algae growth. Low turb.	The results align with historical data and are within expectati seasonal change.
/4/2025, 11:53 am	EPL9	Yarrangobilly River, downstream of the accommodation camp and upstream of Talbingo Reservoir	15.83	97.9	9.69	149	97	8.18	176	0.69	Sunny day. Water level and flow average. Low turb. No odour or unusual algae growth. No recent rain.	The results consistent with previous sample rounds and are expectations for seasonal conditions.
1/4/2025, 9:42 am	EPL12	Yarrangobilly River, immediately downstream of portal pad	12.36	93.3	9.96	147	95	8.18	167	0.4	Sunny day. No recent rain. Water level and flow average. Low turb. No odour or unusual algae growth.	Results for this location are representative of previous round sampling. Large decrease in temperature compared to last no consistent with seasonal change.
1/4/2025, 10:19 am	EPL14	Yarrangobilly River, downstream of road construction areas	13.31	95.1	9.94	144	94	8.2	173	1.11	Sunny day. No recent rain. Water level and flow average. No odour. No unusual algae growth. Low turb.	The results for this location align with data recorded during sampling rounds, and are within expectations for seasonal conditions.
1/4/2025, 10:39 am	EPL15	Yarrangobilly River, downstream of road construction areas	13.84	97.2	10.05	146	95	8.17	176	0.3	Sunny day. No recent rain. Low turb. Water level and flow average. No odour or unusual algal growth.	Results for this location are representative of the location ac to previous sample rounds. Large decrease in temperature compared to last month consistent with seasonal change.
1/4/2025, 12:07 pm	EPL16	Yarrangobilly River, downstream of road construction areas	15.63	93.8	9.32	147	95	8.34	170	0.3	Sunny day. Average flow and water level. No recent rain. No odour or unusual algae growth	The results for this location align with historical data recorde previously as well as seasonal conditions.
/4/2025, 9:29 am	EPL24	Yarrangobilly River tributary (Watercourse 2), directly downstream of road	14.29	50.6	5.17	922.00	590	6.83	112	18.6	Stream is extremely low, no odour, clear colour. No prev rainfall. Lots of vegetation in and around the creek. Watercarts spray the batters within 30m of site and upstream of site.	Results are consistent with previous samples taken here the has been at low levels. High electrical conductivity and low D typical of very low stream flows.
8/4/2025, 8:21 AM	EPL26	Eucumbene River downstream of Marica Road	10.46	74.3	8.29	37	24	8.23	124	16.4	Obvious animal tracks around banks of stream. Clear water no odours, low stream. Dry sunny weather no wind, no prev rainfall	Low DO aligns is consistent with upstream data and previous recorded.
I/4/2025, 8:30 AM	EPL27	Eucumbene River upstream of Marica Road	9.27	77.7	8.92	32	21	8.09	133	14.2	Water steady flow, brown algae at the bottom. Water is clear and odorless. No prev rainfall	Location is upstream of any works. Results are consistent wi previous sampling.
/4/2025, 8:56 am	EPL30	Kellys Plain Creek, downstream of accommodation camp and laydown areas	8.13	75	8.88	11	7	7.66	236	6.3	Low steady flow, no odours, clear water, sunny dry cool day. No prev rainfall	Low DO is consistent with upstream data and previous result recorded. The Low Electrical conductivity results are lower the results we have previously sampled, though it is still within re thoughout our sampled data.
4/2025, 9:13 am	EPL31	Kellys Plain Creek, upstream of accommodation camp and laydown areas	7.87	58.8	6.99	1	1	7.53	244	3.6	Low steady flow, clear water no odour, cool dry day, no prev rain. Evidence of horse activity around the banks.	The dissolved oxygen results are toward the lower end of th recorded from previous sampling rounds, although it has be recorded previously.
4/2025, 8:33 am	EPL33	Murrumbidgee River, downstream of Tantangara reservoir outlet	14.11	63.2	6.5	7	4	7.51	229	30.8	High flowing, normal level water. Clear, no odours. Overcast cool day.	Low DO results are consistent with the levels recorded by us previous sampling rounds. Lower EC reports will be investigated
/4/2025, 7:56 am	EPL34	Nungar Creek, upstream of Tantangara Road	9.3	81	9.3	13	9	7.87	182	9.4	Water levels normal, flowing steadily. No visible sheen, no odours, clear water. Dry sunny weather, cool temps.	These results are consistent with the data we have recorded location, although the low EC is outside the norm.
/4/2025, 8:03 am	EPL35	Nungar Creek, downstream of Tantangara Road	7.54	68.9	8.25	7.0	4	7.69	180	3.6	Dry, sunny, cool weather. Low, steady stream. In the parts where there is no flow, there is evidence of biological sheen. Water is clear and odorless otherwise.	Low DO is consistent with previous results and typical of low
4/2025, 11:40 am	EPL 36	Camerons Creek, upstream of works in Rock Forest	13.57	52	5.41	17	11	6.84	167	5.2	Sunny day. Low flow. Biological sheen present. No odour. Some cattle faeces and hoof marks around waters edge.	The data recorded is representative of low water levels and flow recorded at the time of the sample. Low EC has been a previously in our sample collections.
/4/2025, 11:09 am	EPL 37	Carmerons Creek, downstream of works in Rock Forest	12.21	64.9	6.96	22	14	7.45	201	23.5	Sunny day. Low flow. Cattle nearby. Smells of cattle faeces/urine. Muddy water.	Low DO is consistent with previous results and typical of low Low EC has been recorded previously within our sample coll
/4/2025, 8:09 am	EPL52	GF01 leachate basin	13.56	69.5	7.21	960.00	614	8.71	165	73.2	Basin slightly green, normal smell. No prev rainfall, sunny calm morning. Workings ongoing in gf01	The leachate storage infrastructure is in line with the design function, therefore the high levels of EC and low DO is within of samples collected previously
-	EPL53 EPL54	GF01 surface water upstream east GF01 surface water upstream west	-	-	-	-	-	-	-	-	This location is dry This location is dry	This location is dry. This location is dry.
-	EPL55	GF01 surface water downstream			-	-			-	-	This location is dry	This location is dry.
-	EPL67	Nungar Creek surface water downstream west from Tantangara emplacement area	-			-				-	Location is dry	Location is dry.
	EPL71	Surface water downstream of Marica emplacement	-	-	-	-	-			-	This location is dry	This location is dry.
/4/2024, 12:16 PM	EPL84	F8 Basin	23.65	109.1	9.22	704.00	451	9.19	103	1000	Sunny, no recent rainfall, 65% capacity, brown colour, turbid, no odour	These results are conclusive of the design functions of the kinfrastructure.
5/4/2025, 11:12 AM	EPL85	MY07 Basin	22.51	77.9	6.73	583	373	9.02	13	1,000.00	Visibly turbid water, no odour	These results are conclusive of the design functions of the le infrastructure.
/4/2025, 10:20 AM	EPL86	LHG01 Basin	19.01	90.2	8.1	871.00	557	8.85	-15	190	No sheen or adour	These results are conclusive of the design functions of the kinfrastructure.
PL 21266 In Situ V	Water Quality N	leasurements										
	EPL98	Rock blanket diversion monitoring under GFO1 liner				-	-				This location is dry	This location is dry - GF01 basin was being reconstructed.
3/4/2025, 12:12 PM	EPL99	Marica Leachate Basin-Turkey's Nest	17.66	94.9	9.03	479	312	9.5	4	26.6	Blue water, no algae growth. Evidence of ducks. No prev rainfall, dry sunny day. Water is being pumped out by dewatering	These results are conclusive of the design functions of the infrastructure.
9/4/25, 12:34 PM	EPL100	Marica Lower Leachate Basin USS Shaft	16.25	62.3	6.1	1050	670	8.74	74	167	Sunny day, low level of water in the basin, no smell, turbid water	These results are conclusive of the design functions of the infrastructure. They are also representative of the low leve of the samples being taken.
13/4/2025, 11:58 AM	EPL101	Marica Leachate Basin Spoil Pad	18.34	5.33	56.9	1330	848	7.17	115	41.3	Very low water level, green basin colour. Visible sheen in water, rainbow. Algae growth around edge. Breezy, sunny day no prev rainfall.	These results are conclusive of the design functions of the infrastructure. They are also representative of the low level of the conclusion of the conclusio

EPL 21266 In Situ Water Quality Measurements

EPL 21266 In Situ Wa	ater Quality M April 2025	easurements										
12/4/2025, 9:28 AM	EPL106	Ravine Bay Leachate basin 1	17.44	89.2	8.5	1,660.00	1,060.00	8.85	44	17	Horiba S used for sampling. Water is a dark green colour	These results are conclusive of the design functions of the leachate infrastructure.
-	EPL110	Upstream monitoring of Ravine Bay emplacement area	-	-	-	-	-	-	-	-	Location dry	Location dry.
-	EPL118	Ravine Bay Leachate basin 2		-	-	1	1	-	-	-	Location dry	Location dry.
	EPL120	Ravine Bay Leachate basin 4		-	-			-			Location dry	Location dry.
11/4/25,2:30 PM	EPL122	GFO1 Drainage Line (Formerly EPL 55b)	17.13	88.8	8.54	492	320	8.18	149	129	Bunny day. No recent rain. No odour. Low flow and water level. Milky colour, grey sediment on vegetation around site from when water level was higher.	These results have been previously seen in past sampling rounds, the low DO is conclusive of the low water levels seen.
Table 2 - Reservoir Water Talbingo and Tantangara			Temp (*C)	DO (%) 90 - 110	DO (mg/L)		Objectives (see no TDS (mg/L)		Redox (mV)	Turbidity (NTU) 1 - 20		
Date and Time	EPL Site ID	Location Description	Temp (*C)	DO (%)	DO (mg/L)	EC (µS/cm)	TDS (mg/L)	pH	Redox (mV)	Turbidity (NTU)	Field Comments	Context
13/4/2025, 8:54 AM	EPL10	Taibingo Reservoir, downstream of road works and upstream of water intake point	18.32	87.2	8.2	47	30	7.35	193	5.1	Sunny day. No wind. No recent rain. Water has green colour, more than ravine bay. Water warmer than ravine bay. No odour.	The high EC is in line with results previously recorded by our samples.
13/4/2025, 8:25 AM	EPL11	Talbingo Reservoir, downstream of outlet	18.42	91.2	8.56	41	27	7.35	190	9.5	Sunny day, slightly greener than ravine bay, water temp slightly warmer than ravine bay, no recent rainfall, no odour, zero wind, dusty layer across surface near intake.	This data aligns with data recorded in previous rounds of sampling, the high EC is within range when reviewing previous samples taken.
16/4/2025, 9:46 AM	EPL28	Tantangara Reservoir, upstream of works in the mouth of the Murrumbidgee River	15.3	89.7	9	13.9	11	8.93	110.1	6.85	Sunny; no wind; no previous rainfall. Organic material (including algae) present; no odours or oily sheen; algae causing water to have blue-green colouration. SHORELINE SAMPLE.	DO and EC results are in line with previously recorded data at this location. pH levels recorded are within range of data recorded from previous samples taken.
15/4/2025, 10:24 AM	EPL29	Tantangara Reservoir, downstream of works area and upstream of lower Murrumbidgee River	14.65	60.1	6.11	27	18	7.82	134	0.2	Clear sunny day, moderate wind. Visible algae, water is green. No odour or sheen.	Although low levels of DO have been recorded in our samples taken previously, it is lower than usual. The low DO could be attributed to the algae bloom recorded at the time of the sample.
15/4/2025, 10:19 AM	EPL32	Tantangara Reservoir, Tantangara Intake. Downstream of construction works	14.7	101.6	10.31	27	17	8.13	110	3.3	Clear sunny day, moderate wind. Visible algae, water is green. No odour or sheen.	These results are consistent with previous sampling rounds.
12/4/2025, 9:23 AM	EPL38	Tantangara Reservoir, variable location dependant on tide and reservoir levels. Between the emplacement area and the ancillary facilities for emplacement activities	14.9	89.1	9	27	17	8.59	113	57.9	Sunny day. No recent rainfall. Water very green. Visible algae bloom, bright green. Algae concentrated on western side of reservoir. No odour. Water level low.	These results are consistent with previous sampling rounds. The slight elevation of pH and turbidity could be attributed to the low levels of water.
6/4/2025, 11:49 am	EPL39	Confluence of Nungar Creek and Tantangara Reservoir, variable location dependent on tide and reservoir levels. Upstream of Tantangara construction works	11.75	65	7.04	2	1	7.2	259	6	Low level, constant flow of stream. No odour. Evidence of animal activity on banks. Clear water. Some bubbles on surface, windy, surnry day. No prev rainfall	Low DO levels are within range for previous samples recorded. EC was also observed below the norm.
12/4/2025, 11:45 PM	EPL40	Confluence of the upper Murrumbidgee River and Tantangara Reservoir, variable location dependent on tide and reservoir levels. Upstream of works	16.2	101.3	9.96	32.5	25	7.72	143.5	3.28	Clear sunny day with minimal wind. Low flow water with visible organic material. Sampled from shore due to low reservoir level and inaccessibility via boat. No odour or sheen. Public campers (6 vehicles) 400m away from sample point.	These results are consistent with previous sampling rounds.
15/4/2025, 10:52 AM	EPL 46	Tantangara Reservoir, diffuser outlet discharging into Tantangara Reservoir from Tantangara STP/PWTP	13.84	93.6	9.67	28	18	7.74	165	8.2	Clear sunny day, moderate wind. Visible algae, water is green. No odour or sheen.	These results are consistent with previous sampling rounds.
16/4/25, 10:54 AM	EPL 51	Tantangara Reservoir, downstream of Tantangara STP/PWTP diffuser outlet	16.6	91	8.86	27.5	21	7.87	144.7	10.96	Sunny; no wind; no previous rainfall. Organic material present (not as much as further upstream) no odour or oily sheen. SHORELINE SAMPLE	These results are consistent with previous sampling rounds.
13/4/2025, 8:05 AM	EPL107	Upstream monitoring of Ravine Bay emplacement area within Yarrangobiliy River	17.75	85	8.09	38	25	7.24	183	0.5	Sunny day, no recent rain, water is slightly green but not visible algae growth, clearing occurring at pse	These results are consistent with previous sampling rounds.
13/4/2025, 7:50 AM	EPL108	Monitoring of Ravine Bay emplacement area (centre of PSE) within Yarrangobilly River	17.4	89.2	8.53	33	21	7.29	175	11	Sunny day. No odour. Water green but no visible algae. No recent rain. Clearing occurring at ravine bay.	These results are consistent with previous sampling rounds.
13/4/2025, 7:40 AM	EPL109	Upstream monitoring of Ravine Bay emplacement area within Yarrangobilly River	17.27	85.7	8.23	35	23	7.90	145	15.9	Sunny day. Light breeze. Water green but no visible algae. No odour	These results are consistent with previous sampling rounds.
Table 3 - Treated Water C Tolbingo			Temp (°C)	-	-	Water Quality EC (µS/cm) 700	TDS (mg/L)	pH 6.5 - 8.0		Turbidity (NTU) 25		
Date and Time 23/4/2025, 9:19 AM	EPL41	Location Description Lobs Hole STP/PWTP Final Effluent Quality Monitoring Point. Downstream of final treatment, prior to discharge to Talbingo Reservoir.	Temp (*C)	DO (%)	DO (mg/L) 5.1	EC (µS/cm)	TDS (mg/L)	PH 7.64	Redox (mV)	Turbidity (NTU)	Field Comments Clear water. No odour.	These results are consistent with previous sampling rounds.
Table 4 - Treated Water O Tontongoro	uality Data		Temp (*C)	DO (%)	DO (mg/L)	Water Quality EC (µS/cm) 200	Objectives (see no TDS (mg/L)		Redox (mV)	Turbidity (NTU) 25		
Date and Time 27/4/2025, 11:57 AM	EPL Site ID EPL50	Location Description Tantangara STP/PWTP Final Effluent Quality Monitoring Point. Downstream of final treatment, prior to discharge to Tantangara Reservoir.	Temp (*C)	DO (%) 88.8	DO (mg/L) 8.64	EC (µS/cm)	TDS (mg/L)	pH 7.71	97.8	Turbidity (NTU) 0.58	Field Comments Sample taken from RIO Plant. Water clear; no turbidity; no visible sediment present; no odour or oily sheen	Context These results are consistent with previous sampling rounds.
EPL 21266 In Situ W: EPL Monthly Monitorin GF01 Surface Water and G	g April 2025	easurements	Temp (°C)	DO (%)	DO (mg/L)	EC (µS/cm)	TDS (mg/L)	pH 65-80	Redox (mV)	Turbidity (NTU)	1	
Date and Time	FOI FILE IF	Location Description	Town ffc	I now	DO (mak)		TOT (mat)		Badan fari *	Total discountry (I Field Comments	Context
Date and Time 14/4/2025, 2:47 PM	EPL Site ID EPLS6	Location Description GF01 groundwater upstream east	Temp (°C) 18.47	DO (%)	DO (mg/L)	EC (µS/cm) 214	TDS (mg/L)	pH 7.4	Redox (mV)	Turbidity (NTU)	SWL 8.65m. Some cloud cover. No recent rainfall. No odour. Clear water. Concrete disintegrating around bore cap. Top of GF01 being shaped.	These results are consistent with previous sampling rounds.
14/4/2025, 3:01 PM	EPL57	GF01 groundwater upstream west	16.29	15.7	1.54	194	126	7.44	264	91.9	SWL 15.06m. Clear water. Clear day, No recent rain. No odour. New track right next to bore recently built as part of GF01 shaping.	These results are consistent with previous sampling rounds.

EPL 21266 In Situ W EPL Monthly Monitorin	ater Quality M	easurements										
14/4/25, 8:22 AM	EPL58	GF01 groundwater downstream	15.62	27.4	2.72	962	616	6.11	134	95.2	SWL-7.39m, very clear water, no odour, sunny day, works ongoing in GF01	Elevated results for EC have been increasing recently, and could be result of being a downstream location of the PSE area.pH for this location has regularly recorded lower concentrations.
6/4/2025, 12:08 pm	EPL68	Tantangara groundwater downstream West	12.34	72.6	7.77	2	1	5.72	288	15.1	Running fine, clear water, no odours. No prev rainfall, Windy sunny day. Works continuing on pue	EC results are below WQO's. Low pH levels are consistent with previous monitoring data.
6/4/2025, 12:19 pm	EPL69	Tantangara groundwater downstream East	12.4	42.1	4.5	9	6	5.9	289	23.8	Water level 2.45m, Depth of well 8.43m. Clear water, very little sediment build up at bottom. No octours. Works ongoing adjacent to bore. No prev rainfall	The results for EC are outside of the range of recorded in previous monitoring event, possibly resulting from agitation during sampling. The low pH levels are consistent with previous samples taken.
6/4/2025, 11:03 am	EPL70	Tantangara groundwater upstream	12.4	42.1	4.5	9	6	5.9	289	23.8	Water level 2.45m, Depth of well 8.43m. Clear water, very little sediment build up at bottom. No odours. Works ongoing adjacent to bore. No prev rainfall	The results for EC are outside of the range of recorded in previous monitoring event, possibly resulting from agitation during sampling. The low pH levels are consistent with previous samples taken.
13/4/2025, 11:36 AM	EPL 72	Marica groundwater upstream	14.68	50.9	5.16	46	30	7.21	105	206	SWI, 37.71m, BBL 44.60m. Cloudy at bottom with grey colouring. No odours. No prev rainfall. Borehole well intact.	These results are within historic records for this location. The elevated turbidity is an outlier for data recorded in previous sample rounds.
	EPL73	Marica groundwater downstream	-		-	-	-	-	-		This site has been decommissioned.	This site has been decommissioned.
11/4/2025, 10:23 AM	EPL80	LHG groundwater upstream	18.13	20.8	1.96	685	438	6.8	-41	14.3	Water level - 29.49 m	These results are consistent with previous sampling rounds.
11/4/25, 10:38 AM	EPL81	LHG groundwater downstream	19.05	27.1	2.51	859	550	7.1	-167	669	Turbid muddy water. Depth to water 3.99m from top of casing.	The elevated EC results have been recorded in previous sampling rounds. The elevated turbidity is within data recorded in previous sampling rounds.
11/4/2025, 10:28 AM	EPL82	MY groundwater upstream	17.18	17.4	1.67	2190	1400	6.65	-50	43.9	Water level 6.02 m	The elevated EC results are consistent with sampling rounds within the past year.
11/4/25, 9:43 AM	EPL83	MY groundwater downstream	17.36	42.8	4.1	815	521	6.78	-32	74.7	Depth of water is to top of casing 3.94m. Horiba 5 used.	The elevated EC results are consistent with sampling rounds within the past year.
11/4/2025, 10:32 AM	EPL87	MY groundwater downstream	17.43	40.3	3.85	651	417	6.72	152	1000	Water level 4.3 m	The elevated EC results are consistent with previous samples taken.
11/4/2025, 9:16 AM	EPL88	MY groundwater downstream	16.1	37.7	3.71	788	519	7.14	-215	18.7	Depth of water 3.37m (top of casing). Horiba 5 used. Water is visibly turbid with a strong sulfuric smell	The elevated EC results are consistent with previous sampling rounds.
11/4/2025, 10:34 AM	EPL89	LHG groundwater downstream	16.01	60.6	5.98	302	196	6.81	145	14.8	Water level 3.29 m	These results are consistent with previous sampling rounds.
14/4/2025, 7:47 am	EPL 90	GF01 groundwater downstream	13.59	73.8	7.67	62	40	7.23	130	100	SWL 13.14m. Sunny day. No recent rain. Bore directly below batter where water carts irrigate.	These results are consistent with previous sampling rounds.
14/4/2025, 8:01 AM	EPL 91	GF01 groundwater downstream	14.51	37.1	3.78	218	142	6.98	-108	11.2	SWL 8.14M. Sunny day. No recent rain. Slight sulphur odour.	These results are consistent with previous sampling rounds.
14/4/2025, 7:47 AM	EPL 92	GF01 groundwater downstream	13.56	93.8	9.76	134	87	7.87	142	930	SWL- 19.95m, muddy water, no smell, sunny day	These results are consistent with previous sampling rounds. Elevate turbidity to be managed through upcoming bore development program.
14/4/2025, 7:58 AM	EPL 93	GF01 groundwater downstream	13.81	91	9.41	207	134	7.84	114	895	SWIL- 14.18m, turbid water, no odour, sunny day	These results are consistent with previous sampling rounds. The high turbidity could be attributed to bore development, this will be monitored.
14/4/2025, 8:02 AM	EPL 94	GF01 groundwater downstream	13.88	91	9.4	151	98	7.78	12	107	SWL- 13.54m, sunny day, a bit turbid water, no odour	These results are consistent with previous sampling rounds.
14/4/2025, 8:14 AM	EPL 95	GF01 groundwater downstream	15	89.9	9.04	821	526	7.89	94	151	SWL-7.32m, very clear water, no odours, sunny day, works ongoing in GF01	These results are consistent with previous sampling rounds.
9/4/2025, 7:54 am	EPL 96	GFO1 groundwater downstream	11.79	99.4	10.75	291	189	6.72	216	869	SWL5.30m, BBL14.45m. No concrete, or lid on bore. The pipe is cracked. Orange colour, no odour, no prev rainfall. Likely ingress of surface water. Works ongoing at gf01.	These results are consistent with previous sampling rounds. The hig turbidity could be attributed to bore development, this will be monitored.
14/4/2025, 9:26 AM	EPL 97	GF01 groundwater downstream	15.49	22.7	2.26	363	236	6.84	113	1.3	SWL 6.35m. Sunny day. No recent rain. Bore plinth loose, concrete unstable. Low turb.	These results are consistent with previous sampling rounds.
	EPL102	Groundwater monitoring associated with the Marica emplacement area on Marica Trail	-			-	-		-		This location has been decommissioned.	This location has been decommissioned.
6/4/2025, 10:47 am	EPL103	Upstream groundwater monitoring west of the Tantangara emplacement area	11.05	39.2	4.31	13	8	6.01	296	8.6	Water level 11.31m, Depth of well 22.24m. Clear water, no sediment build up. No odours. Works continuing on pse.	The results, including the low EC, is consistent with samples previously taken.
6/4/2025, 12:34 pm	EPL104	Downslope groundwater monitoring east of the Tantangara emplacement area	12.6	39.7	4.22	14	9	5.95	296	11.7	Water level 4.44m, Depth of well 6.82. Cool sunny day, no prev rainfall. Clear water, runny sediment particles orange at very bottom. No odour.	The results, including the low EC, is consistent with samples previously taken.
6/4/2025, 11:30 am	EPL105	Downslope groundwater monitoring east of the Tantangara emplacement area	12.64	40	4.25	130	84	5.83	310	168	No odour, clear colour, running slowly out of bore. Pump is preventing dipping and depth sounding.	The results, including the low EC, is consistent with samples previously taken.
4/4/2025, 12:11 PM	EPL113	Upstream east monitoring of Ravine Bay emplacement area	15.08	17.7	1.78	168	109	6.31	154	437	Water level reading: 3.07	These results are consistent with previous sampling rounds.
EPL 21266 In Situ W EPL Monthly Monitorin	ater Quality M	easurements										
4/4/2025, 12:56 PM	EPL114	Upstream west monitoring of Ravine Bay emplacement area	15.49	21.6	2.15	397	258	7,41	27	20.4	W.R. 31.83	These results are consistent with previous sampling rounds.
4/4/2025, 12:33 PM	EPL115	Downstream east monitoring of Ravine Bay emplacement area	15.51	13.2	1.32	363	236	7.38	36	220	Water level reading: 10.98	These results are consistent with previous sampling rounds.
4/4/2025, 1:25 PM	EPL116	Downstream west monitoring of Ravine Bay emplacement area	15.55	54.5	5.43	178	115	6.88	128	1,000	WIR 8.23	These results are consistent with previous sampling rounds.
			15.82	10.8	1.07	149	97	6.34	0	1000	WLR: 15.70	These results are consistent with previous sampling rounds.

Note 1: Water Quality Objective values for the transapolish fiver and Minor Watercourses refer to the default trigger values for physical and chemical stressors in such-east Australia (pulsand ment) that are reported in Tables 3.1.2 and 3.1.3 and 3.1.3 and 3.1.2 and 3.1.3 and 3.1.3 and 3.1.2 and 3.1.3 and 3.1.2 and 3.1.3 and 3.1.2 and 3.1.3 and

		Sn	owy Hydro 2.0 Main Works																																
	Monthly EPL Sa	mpling: 01-31	March 2025 - Groundwater																														-	$\overline{}$	$\overline{}$
					1				l		EB/D																(PSTO)	l				1 7		1	1
				EP156	694,67	69158	EPLES	EPLER	69439	EP472	(descriptions)	EPLED	OPURS.	EPUR?	69183	EPLE?	PIR	EPURR	EP1, 93	EPS.91	EP152	CPERR	EPLSE	GP1.95	EPLSS	EP187	(Documentationed)	EP5.519	EPL594	EP1.505	DUIS	EP4.154	EP1.115	EP4.116	EP1.117
Analyte	Unit	Limit of Reporting	Water Quality Objective Value*																																
Physiochemical						16/06/3825						11/94/2025	11/04/3035	11/14/2025																6/94/3025		4/94/3025			
par	perchas		658	7.4	7,44	6.11	5.72	1.9	3.9	7.21		6.8	7.1	6.65	6.75	6.72	7.24	6.81	7.29	6.35	7.87	7.54	7.75	7.89	6.72	6.84		6.00	3.95	5.83	6.21	7.41	7.38	6.88	6.34
Flexivial Conductivity	pl/cm		10-150	214	194	962	2	9	9	46		685	800	2290	515	651	788	322		218	134	207	151	821	291	353		13		130	166		363	176	149
Oxidation Reduction Putential	wW.		No Water Quality Objective Walse	116		134	288	289	289	105		-41	-117	-50	-32	152	-215	245	130	-226	102	114	12	91	216	113			196	310		27	36	128	-
Temperature	Ψ.		No Water Quality Objective Wrise		16.29		12.34			14.68		18.13	19.05		17.36		16.1	16:00		14.51	13.56	13.81	13.88	15	11.79	15.49			12.6	12,64		15.49	15.51		15.82
Dissolved Ovegen	% saturation		No Water Quality Objective Walue		15.7		72.6		42.1	50.5		20.8		17.4	42.8				73.8	37.1	93.8	%	91	85.9		22.7			29.7	40		21.6	13.2		30.8
Turbidity	WTU		No Water Quality Dejective Value	4.9	91.9	95.2	25.1	23.8	23.8	206		34.3	660	43.9	74.7	1000	18.7	34.8	100	11.2	930	855	107	151	869	1.3		8.6	11.7	168	437	20.4	229	1000	1000
Laboratory analytes																																			
115	mg/L	5	No Water Quality Objective Walse	- 6	29	68	- 6	17	18	88		14	2,030	71	54	11,700	46	223	71	10	593	2,190	193	134	550	- 65		45	<5	43	42	9	222	6,400	10
Hardness as Ca003	mg/l	1	No Water Quality Objective Value	25	112	372	41	9	26	13		372	460	1,240	143	200	154	64	20	126	36	204	72	346	126	140		2	9	50	45	190	177	71	45
Nations																																	_		
Ammonio ao N	Mg/L	1.0	23	33		30	<10	432	430	39		60	60	100	30	420	40	70	10	40	10	30	20	140	430	30			<10	- 40	30	72	30	33	20
Nitritic + Nitrotic as N (NOs)	JAGA.	1.0	25	90	1,230	53,800	760	140	890	40		<10	30	<10	10,100	8,110	8,260	400	340	<10	30	20	<10	49,700	9,150	70		850	230	5,700	20	411	<23	43	(3)
Kjiddahi Nitrogan Total	Mark.	180	No Water Quality Objective Value	200	100	2,700	<200	4000	4500	100	-	200	600	200	300	2,000	600	200	100	<300	200	500	100	2,600	+300	<200		100		100	400		100	1,600	300
Hitrogon (Total)	M/S	180	250	200	1,300	66,300		100	900	100		200	600	200	33,400	10,100	8,900	200	400	<200	200	500	100	52,300	9,100	<200		1,000	200	6,200	400	<320	100		300
Reactive Phosphorus	M/S	1	25	- 44	<1	- 4	-41	- 41	20	- d		41	- 4	-41	- 41	<1	- 4	- 41	- 41	20	- 41	- 4	41	- 4	20	30		1		- 41	- 4		- 41	23	<1.0
Phosphorus (flotal)	200	1.0	20	50	50	190	<10	433	130	150		220	300	<10	20	540	80	10	60	30	280	1,520	100	180	490	30		30	<10	- 410	80	20	60	1,770	1,650
homain												_																				$\overline{}$	$\overline{}$		
Curvide Total	200A	4		- 1	- 44	- 41	-04	-04	- 64	<6		- 64	- 01	-01	<4	-44	- 08	-14	- 16	- 64	- 06	- 44	-04	<4	-04	-14		- 44	-04	<6	-08	ot I	- 04	- cd	- 04
Pydrogeters		_					_	_		_		_		_								_			_							$\overline{}$	$\overline{}$		
Of and Greate	765	- 1		- 41	(1	- 41	- 41	- 41	- 41	-61		- 41	- 61	- 41	41	41	e1	- 41	-41	e1	- 61	e1	41	41	- 41	41		1	41	- 41	e1	- 4	(1.7	- 1	- 1
Metals					_							_																				$\overline{}$	$\overline{}$	$\overline{}$	
Number tosal	865		No Water Quality Objective Value	54	745	526	115	976	1,133	764																									$\overline{}$
Number Misched	10%		27	-5	45	- 15	- 15	- 15	45	- 5		-5	45	- 6	45	-15	- 6	-15	-6	-5	- 6	- 6	- 45	45	-15	- 45		-15	-45	45	7	- 15	- 15	-65	- 6
Access Dated	100°L	0.2	No Water Quality Objective Value		2.4	0.6	+0.2	6.2	+0.2				-			_										-		1						_	_
Acresis (dissaland)	701	0.2	68		2.6	40.7		(0.2	+0.2	60.2		5.6	6.9	1.7	2.1	0.5	18.9	0.4	e02	0.5	r02	0.8	1.1	65	0.1	0.2		+0.2	(0.2	+0.2	0.4	0.6	0.6	0.5	0.9
Oromium (BrVI (total)	100	0.2	No Water Quality Objective Water	0.4	1,4	1.6	0.3	10	1.0		_	-	-	-	-	-		-		-	-	-	-		-	-		-	-		-	_		_	_
Chronium (IE-VI (dissolved)	200	0.2	9.01	+0.2	40.2	40.2	+0.2	+0.2	+0.2	+0.2		+0.2	40.2	0.2	40.2	+0.2	40.2	40.2	+0.2	40.2	+0.2	<0.2	+0.2	40.2	0.3	40.2		+0.2	10.2	0.3	40.2	40.2	40.2	40.2	40.2
Copper flotal)	m/s	0.5	No Water Quality Objective Value	6.2		1.1	0.6	1.5	22.1	-		-	-			-		-	-		-		-	-			-	-		-	-	_		-	-
Copper (planshed)	PR/L	0.5	1	1.0	1.2	0.8	10.5	10.5	6.9	4.2		-0.5	0.6	<2.5	3.3	6.7	<0.5	6.1	10.5	<0.5	10.5	<0.5	<0.5	0.8	<0.5	-92.5		6.2	40.5	<0.5	2.0	-0.5	<0.5	10.5	<0.5
too totall	MA.	2	No Water Quality Objective Value	125		860	152		546	-		-		1	-		- 1							-			-				-	_	-	-	_
too Manhed	100	-	NO.	- 0		- (2		4	-0	- Q	_	-0	- 0	179	d	- 0	48		- 0	-	a	a	-0	a	-	-0			- 12	- 12	- 11	_	-Q	d	1,450
Leve thotal	867	9.1	No Water Quality Objective Wave	1.0					0.4	- 12	_					-		- 12		_		-		_	_	- 12					- "	-	_	_	
Lead (dhaphed)	HO!	0.1	1	49.1		0.1	-01	40.1	40.1	40.1	_	40.1	40.1	40.1	40.1	40.1	40.1	40.1	40.1	49.1	0.3	40.1	-0.1	40.1	-01	40.1	_	-01	40.1	40.1	0.1	-01	40.1	401	40.1
Managenes (total)	865	0.5	No Water Quality Objective Value	31.5	103	212	43	17.2	12.2					-2.5														-				-	-	-	-
Management (disorbeed)	965	0.5	1,000	12.6	58.9	125	21	1.3	1.6	5.0		198	262	955	51.6	336	176	15.6	53	466	61.6	128	163	981	105	295		-0.5	3.4	17.0	80.7	992	363	49.0	303
NiAschutati	96 ¹	0.5	No Water Quality Objective Value	0.5	2.4	6.6	0.8	0.9	10.5		_	100	225	-	11.0	- 20	179	42.0		410	11.0	440	-002		197	100		-	- 1.5	11.0	-		-	410	-
Nike (disubed)	MA.	0.5		10.5		4.2	10.5	10.5	10.5	1.0		17.6	2.5	1.4	8.4	2.4	1.0	10	1.5	10.5	1.1	0.8	0.9	100	1.1	1.1			10.5	3.5	40.5	54.2	40.5	0.6	1.4
When horsel	M67	9.05	No Water Quality Objective Value	10.01					10.00			27.4			2.1			2.0		10.5				100				10.5		4.5	10.5	20.0	10.5		
She [display]	96°	9.05	An arrest spaning Coperate Value	10.01					10.00	10.01		10.00	10.01	12.01	10.01	10.01	10.01	10.00		10.01	10.05	10.01	10.06	10.01	10.01	10.01			10.01	10.01	10.01				10.01
Zing (hated)	160°	911	No Water Coaline Objective Volum	1001		16	10.01	-244	10.00	10.01	_	-346	-391	-301	-2191	-291	10.01	-2-91	10.61	-0.01	-0.65	-0.01						10.01		-0.65	10.51	10.01			-5501
Zinc (dissolved)	700	1	No more spansy beganic value	l - i -				- 4		-	_	 	_	-	_	111	_	-1	_	- 41	-	- 4	-	23	103	- 12	_		42	21	-	-	- 62	-	- 12
the bearing	- 40			_														_		_			-		- 30				- 14						

Water Quality Oppositive values for groundwater refer to the default brigger values for physical and cherical distribution in swell-head during layers (AMCCA/AMSCANC/SWS), they are not perhapsed frests regioned by DT. E2286.
Seepar not required at 10th Sections.

Snowy Hydro 2.0 Main Works Monthly EPL Sampling: 01-30 April 2025 - Talbingo and Tantangara Reservoir

Analyte	Unit	Limit of Reporting	Water Quality Objective Value*
Field			
pH	pH Unit	-	6.5-8
Electrical Conductivity	μS/cm		20-30
Oxidation Reduction Potential	mV		No Water Quality Objective Value
Temperature	*c		No Water Quality Objective Value
Dissolved Oxygen	% saturation		90-110
Turbidity	NTU	-	1-20
Laboratory analytes			
Total suspended solids	mg/L	5	No Water Quality Objective Value
Hardness as CaCO ₃ (filtered)	mg/L	1	No Water Quality Objective Value
Nutrients			
Ammonia as N	μg/L	10	10
Nitrite + Nitrate as N (NOx)	μg/L	10	10
Kjeldahl Nitrogen Total	μg/L	100	No Water Quality Objective Value
Nitrogen (Total)	μg/L	100	350
Reactive Phosphorus	μg/L	1	5
Phosphorus (Total)	μg/L	10	10
Inorganics	i i	1	
Cyanide Total	μg/L	4	7
Hydrocarbons	1	1	
Oil and Grease	mg/L	1	5
Metals			
Aluminium (dissolved)	μg/L	5	55
Arsenic (dissolved)	μg/L	0.2	13
Chromium (III+VI) (dissolved)	μg/L	0.2	1
Copper (dissolved)	μg/L	0.5	14
Iron (dissolved)	μg/L	2	300
Lead (dissolved)	μg/L	0.1	3.4
Manganese (dissolved)	μg/L	0.5	1,900
Nickel (dissolved)	μg/L	0.5	11
Silver (dissolved)	μg/L	0.01	0.05
Zinc (dissolved)	μg/L	1	8
Biological			
Faecal Coliforms	CFU/100mL	1	10/100^
Biochemical Oxygen Demand	mg/L	2	1/5^

EPL10	EPL11	EPL28	EPL29	EPL32	EPL38	EPL39	EPL40	EPL46	EPL51	EPL107	EPL108	EPL109
13/04/2025	13/04/2025	16/04/2025	15/04/2025	15/04/2025	12/04/2025	6/04/2025	12/04/2025	15/04/2025	16/04/2025	13/04/2025	13/04/2025	13/04/2025
7.35	7.35	8.93	7.82	8.13	8.59	7.2	7.72	7.74	7.87	7.24	7.29	7.9
47	41	13.9	27	27	27	2	32.5	28	27.5	38	33	35
193	190	110.1	134	110	113	259	143.5	165	144.7	183	175	145
18.32	18.42	15.3	14.65	14.7	14.9	11.75	16.2	13.84	16.6	17.75	17.4	17.27
87.2	91.2	89.7	60.1	101.6	89.1	65	101.3	93.6	91	85	89.2	85.7
5.1	9.5	6.85	0	3.3	57.9	6	3.28	8.2	10.96	0.5	11	15.9
	-										•	
<\$	<\$	17	<5	<5	18	<5	<5	<5	<5	<5	<	<5
22	19	9	9	9	9	7	9	9	9	10	10	10
30	30	<10	10	10	<10	<10	<10	20	<10	<10	<10	<10
<10	<10	10	<10	<10	<10	80	<10	<10	<10	<10	<10	<10
100	100	1,200	500	300	800	100	<100	300	400	<100	<100	<100
100	100	1,200	500	300	800	200	<100	300	400	<100	<100	<100
<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
30	20	70	30	30	40	150	20	20	50	20	20	<10
<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
<5	<\$	15	9	9	9	12	13	8	9	<5	<	<5
0.4	0.4	0.3	0.3	0.4	0.4	<0.2	< 0.2	0.4	0.4	0.4	0.4	0.3
<0.2	<0.2	< 0.2	<0.2	<0.2	< 0.2	<0.2	< 0.2	<0.2	<0.2	<0.2	<0.2	< 0.2
<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
6	4	72	55	56	52	77	58	61	58	4	4	4
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	2.2	2.4	<0.5	<0.5	<0.5	<0.5	<0.5
<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01
<1	<1	<1	<1	<1	<1	4	<1	<1	<1	<1	<1	<1
28	21	100							1			
4	3	4	-	-	-	-	-	-	2	-	-	-

^{*} Water Quality Objective values for Talbingo and Tantangara Reservoir refer to the default trigger values for physical and chemical stressors in south-east Australia (fresh lakes and reservoirs) for the protection of 95% of aquatic species ANZECC / ARMCANZ (2000), they are not pollutant

		Sni	owy Hydro 2.0 Main Works		_		_	_	_		_	_	_		_	_			_		_	_		_	_		_		_			_	_		_	
Mo	inthly EPL San		April 2025 - Surface Water		854	Dia	PU	6542	PLII	CPLIA	PLIE	09524	EP526	BUI	(Page	9531	(PG)	D134	PSS	DV8	847	0512		PSIA EPSI		EP-71 EP-84			us (P	as 1500	(PLIES	PLHI	EP-106		Pun Pu	
Analyte	UNIX	Limit of Reporting	Water Quality Objective Value*				"																				"	. -	-							_
Electric Control of Co			i	11/84/2025	10/94/392	25 11/04/2025	11/04/2025	11/04/2005	15/94/2025	11/84/2025	11/04/0036	9/94/2025	13/04/2025	13/94/7005	6/94/9825	6/94/2005	6/04/2005	6/94/2025	6/04/2025	22/94/2005	5/84/2005	9/34/2425	Bry	Bry Bry	f Dry	Dry 29/84/20	05 24/04	15/0	4/2605 0	y 18/94/2001	5 19/04/2025	13/04/9605	12/94/9825	Bry	Day 0	1 23/34/3
-		-	614	8.14	8.04	8.18	8.18	8.18	8.2	8.17	8.34	6.83	833	8.66	746	7.53	751	7.87	766	6.36	7.45	8.71	Gry	Day Dry	g Day	Dry 9.60	84	4 8	85 8	9 95	874	2.47	8.85	Day	Day Do	ley 836
Restrict Conductions	«Ven		10.150	150	127	193	149	147	166	146	147	903	17	32	33	1	2	- 13	7	- 46	22	960	Dry	Dry Dry	Dry.	Dry 997	- 62		(7)	D 429	1050	1990	1660	Div	Day Dr	lty 656
Oxidation Reduction Extended	mV.		No Water Could's Chierties Volum	179	123	175	126	167	178	176	170	112	124	199	296	264	224	187	180	281	201	165	Dry	Day Dry	Do-	Dry 96	- 11		15 1	9 4	74	115	- 64	Div	Day Dr	tr 185
Temperature	- 1		No Water Could'y Chieshie Volum	12.21	12.56	16.68	15.83	12:36	13.35	13.84	15.63	14.29	10.66	9.22	8.13	7.87	58.11	9.3	7.54	11.09	12.21	13.96	Cry.	Dry Dry	Day	Dry 10.89	181	5 1	1.01	17.66	1625	19.34	17.66	Day	Day Dr	15 25.00
Dissibat Govern	Naturation		90-110	92.3	96.7	00.3	97.0	50.3	15.1	97.2	92.8	50.5	26.2	77.2	73	56.0	63.2	- 12	68.0	51.8	64.0	41.5	Cry	Dry Dry	e Dry	Dry 19.8	72	6 3	0.1 0	y 94.3	62.3	5.33	89.2	Div	Dry Dr	ry 10.3
Turbidity	NTU	-	235	3.13	0.59	0.86	0.09	0.4	1.11	0.3	0.3	184	25.4	142	63	2.5	20.6	8.4	1.6	15.2	22.5	72.2	Gry	Dry Dry	p Dry	Dry 1000	120	0	50 0	y 26.5	167	413	12	Dry	Dry Dr	ny 1000
Laboratory analytes									$\overline{}$																											
PM	mg/L	5	No Water Quality Objective Value	6	- 6	- 6	15	- 6	-65	-6	-6	- 6	-65	- 6	-6	-6	- 6	-6	45	16	29	34	Cry	Dry Dry	Dry	Dry 349	92		77 [y 6	60	-65	- 6	Dry	Day 0	577 64 41
Hardness as CxC05	mg/l.	1	No Water Quality Digitalise Value	81	72	81	\$5	63	87	82	- 1	262	18	34	13			16	16	13	17	295	Cry	Dry Dry	P Dry	Dry 36	- 41	1	44 6	ry 170	226	200	160	Dry	Dry Dr	4 61
National																																	_			
Ammonia as N	нεΛ	10	13	43	<10	50	20	20	30	33	6	<30	20	10	<30	<10	20	30	<1.0	10	20	30		Dry Dry	Ony	Dry 50	- 6		20 0	12,300		2,110				hy 30
Nisite + Nitrate at N (MOx)	нεΛ	10	15	<10	<50		80	<10	-010	-01		89,500	10	dt	59	<10		36	<10	(6)		12,600		Dry Dry	y Dry	Dry 8,333			,300 E		17,800	88,000			Bry Br	
Ejridahi Nitrogen Total	PE/\	100	No Water Coality Objective Value	200	100			100	100			5,200	<300		<500		400			300		100		Dry Dry	p Dry	Dry 3,800			500 0		4,390	7,200		Dry		
Nitrogen (Total)	PE/\	100	250	200	100	300	200	100	100	150	100	65,800	c980	<100	<530	<990	500	100	100	300		12,700		Dry Dry	p Dry	Dry 12,000			200 (43,000	45,300	38,300		Ony Or	try 6,300
Bractice Roughous Phosphorus (Note)	HA/L	1	15 10	- 4	- 4		45	- 6	- 41	d	- 5	d	d	d	d	-6	- 4	-d	-45	45	d	d		Day Dry	p Dry				59 8			-03	100		By Br	
	HEA	10	31	100	+00	(3)	30	<00	-019	23	,		120	30	22	100	20	10	22	20	0)	60	Cry	Dry Dry	r Dry	Dry 850	63)	10 0	79 20	200	30	100	Dy	Dry Dr	My 730
Cypnick Ystal	MV.		4	- 14	- 14	- 15	14	- 14	46	-68		48		44	-15	- 64	-11	114	44	18		-14	Law I		1	Dry 46			4 1	y 116	- 14	7		Dry	- 1	
tretruschen	PEI	-	_	- 10	- 54	- 11			- 11	- 54	- 54	- 11	- 14	- 14	- 11	- 54	- 51	- 19	- 11	**	- 51	- 15	ury	DIY IN	UY	My St	- "		4 1	1 119	- 10			UV	94 0	-
Olandana	ma/h	-		- 41	1	- 4		1					-1			-12							Law I	Anna II Anna	T and	Dry 1				ry 11		1	44	T and T	0	
March .	- 100										- "	- 4	- "	- 14	- 4	- "	- "	-4	-14	- 4	- "	- 14	Uny	OFF ST	Uty	147 14	_			* **				Luy	04 U	1 4
Aberietan (tetal)	нΛ	- 1	No Water Could's Objective Value	_	т.												-					1.140	I . I		Ι.		1							T. I	-	
Aberbeign (Goodwal)	MV.	- :	NO TRANSPORTED VALUE	-		- 0	- 0	- 6	- 65		- 6	- 0	- 0	-			-	-		16.	35	17	Sec.	Doy Do	- Dov	Dev 11	_	_		16	10		- 4	Dov	Dry Dr	
Accordis Datasi	MQ.	6.2	No Water Could's Chiester Volum				-						- "						-	- 10	- "	62		24 24	-	1019 11	-	_		,	- 10			- 109	-	-
Arunic (dissolved)	MA.	82	0.8	0.7	0.3	0.7	0.7	0.2	0.6	0.6	-0	1.1	402	-0.2	40.2	40.2	0.4	49.2	49.2	0.1	0.3	4.4	Car.	Doy Do	- Peru	Dry 195	21		5.4	DV 1.3	1.9	23	15	Div	Ony Or	ley 2.0
Chromium HE-WE (broof)	MV.	82	No Water Quality Charther Value	- 0.5		-	-			- 10	4				-0.4			-42	-0.1			53	-	24 24	-	123	- "	_				- 13	-	- 1	-	
Oranium III-VII (displand	MV.	82	0.64	40.2	-0.2	40.2	+0.2	0.2	-0.2	40.2	-0	1.5	0.3	0.2	40.2	40.2	40.2	49.2	40.2	40.2	40.2	2.3	Cry.	Dry Dry	- Dry	Dry 15.0	21	2 1	10 0	ry 14.1	72	13.6	1.6	Div	Dry Or	ny 0.3
Cooper (tutal)	M/A	65	No Water Quality Objective Value		-	-	-	-		_		-	-		-	-	-	-	-	-	-	2.2	1									-	-		-	
Cooper (displayed)	MAV.	65	1	40.5	-9.5	46.5	-0.5	40.5	40.5	405	-41	12	41.5	40.5	40.5	40.5	40.5	<0.5	40.5	-0.5	48.5	0.8	Ony	Dry Dry	One	Dry 6.2	2		1.0	ny 2.0	LS	1.7	40.5	Dry	Ony On	lay 1.0
iron (total)	PE/A	2	No Water Quality Objective Value		1	-		-	-	-	-											1,410	-								-	- '				
tree (dissolved)	PE/A	2	300	48	21	7	9	2	4	- 6	-50		14	9	22	25	83	11.6	124	211	176	2	Gry	Dry Dry	Dry	Ory 20	5		2 1	y -2	-2	- 2	d	Dry	Ony On	ny 8
(cod (total)	PE/\	6.1	No Water Quality Objective Value	-		-		-		-	-							-					-		-		-			-	-				7	
Lead (dissalved)	PEA.	61	1	40.1	-0.1	10.1	<8.5	40.1	-0.1	401	d	6.2	40.1	-0.1	40.1	481	48.1	49.1	48.5	40.1		48.1	Bry	Dry Dry	y Dry	Dry 0.5			01 0	y 401	- 61	40.1	48.1	Dry	Day Br	ty 40.1
Marginese (total)	re/\	65	No Water Cooling Chiestive Value					-														21.2	-				-									
Marganese (doodved)	ye∧.	65	1,300	1.2	3.6	1.3	3.4	0.5	0.6	1.4	- 6	298	13	1.0	6.6	2.1	48.5	67	9.3	16.2		17	Bry	Day Dry	Dry	Dry 0.8	- d	5 4	0.5	y 2.5	2.6	116	40.5	Dry	Day Dr	try 7.6
Michel (Fetal)	HE/L	85	No Water Coolity Chiestive Value											-	-	-		-	- 1	- 1		5.1												-	-	
Michel (disordered)	ee∧.	6.5		40.5	10.5	18.5	+0.5	40.5	-0.5	465	- 61	4.5	40.5	-0.5	+0.5	48.5	48.5	48.5	-0.5	e0.5	48.5	0.8	Bry	Dry Dry	Dry	Dry 1.8			18 8	y 0.6	1.0	1.0	1.9	Day	Ony Or	ley 5.1
Sher (otal)	лал.	0.01	No Years' Coality Dipositive Value				1															4081										1	1			
Sher (daubed)	нέγ	0.01	0.00	*E01	43.05	40.31	40.05	4631	910+	+3.03	- 6	+631	< 01	40.11	-631	4801	<0.00	481	<0.00	3.0	+0.01	681	Cry	Dry Dry	Dry	Dry +0.85	41	11 4	MII E	y 0.02	401	4081	40.00	Diy	Day 0	ly 600
2 no (total)	нΛ	1	No Your Coally Dipositive Value 2.4		- 4	- 4			- 4		- 45	10				- 4	- 4			- 0						Dry 1	-	_	4 1		- 4	- 4	- 4	Dry	Ony Or	

Water Clarifly Chipother wikes for surface water risks to the default trigger values for physical and chemical infocus in so protection of 95% of squartic species ANZECC / ARRICANZ (2018), they are not poliutant limits imposed by EFX 22286.

^{**} Algal blooms can present as faecal coliforms

 ⁹⁰th percentile concentration limits / 100 percentile concentration limits

⁻ Sample not required at this locatio

Date 1/04/2025 2/04/2025 3/04/2025 4/04/2025 4/04/2025 5/04/2025 6/04/2025 6/04/2025 7/04/2025 8/04/2025 9/04/2025 10/04/2025 11/04/2025	
2/04/2025 3/04/2025 4/04/2025 5/04/2025 6/04/2025 6/04/2025 7/04/2025 8/04/2025 9/04/2025 10/04/2025 11/04/2025	Date
3/04/2025 4/04/2025 5/04/2025 6/04/2025 6/04/2025 8/04/2025 8/04/2025 8/04/2025 10/04/2025 11/04/2025	1/04/2025
4/04/2025 5/04/2025 6/04/2025 6/04/2025 7/04/2025 8/04/2025 9/04/2025 10/04/2025 11/04/2025	2/04/2025
5/04/2025 6/04/2025 7/04/2025 8/04/2025 9/04/2025 10/04/2025 11/04/2025 11/04/2025 11/04/2025 11/04/2025 11/04/2025 11/04/2025 11/04/2025 15/04/2025 15/04/2025 16/04/2025 18/04/2025 19/04/2025 19/04/2025 20/04/2025 21/04/2025 22/04/2025 23/04/2025 25/04/2025 25/04/2025 26/04/2025 27/04/2025 28/04/2025 28/04/2025 28/04/2025	3/04/2025
6/04/2025 7/04/2025 8/04/2025 9/04/2025 10/04/2025 11/04/2025	4/04/2025
7/04/2025 8/04/2025 9/04/2025 10/04/2025 11/04/2025	5/04/2025
8/04/2025 9/04/2025 10/04/2025 11/04/2025 11/04/2025 12/04/2025 13/04/2025 14/04/2025 15/04/2025 16/04/2025 16/04/2025 18/04/2025 19/04/2025 20/04/2025 21/04/2025 22/04/2025 22/04/2025 23/04/2025 24/04/2025 25/04/2025 25/04/2025 26/04/2025 27/04/2025 28/04/2025 27/04/2025 28/04/2025 29/04/2025 29/04/2025 29/04/2025 29/04/2025 29/04/2025 29/04/2025	6/04/2025
9/04/2025 10/04/2025 11/04/2025 11/04/2025 12/04/2025 13/04/2025 14/04/2025 15/04/2025 16/04/2025 16/04/2025 18/04/2025 19/04/2025 20/04/2025 21/04/2025 22/04/2025 23/04/2025 24/04/2025 25/04/2025 25/04/2025 26/04/2025 27/04/2025 28/04/2025 28/04/2025 27/04/2025 28/04/2025 29/04/2025	7/04/2025
10/04/2025 11/04/2025 11/04/2025 12/04/2025 13/04/2025 14/04/2025 15/04/2025 16/04/2025 16/04/2025 18/04/2025 19/04/2025 20/04/2025 21/04/2025 22/04/2025 23/04/2025 24/04/2025 25/04/2025 25/04/2025 26/04/2025 27/04/2025 28/04/2025 28/04/2025	8/04/2025
11/04/2025 12/04/2025 13/04/2025 14/04/2025 14/04/2025 15/04/2025 16/04/2025 16/04/2025 18/04/2025 18/04/2025 19/04/2025 20/04/2025 21/04/2025 22/04/2025 24/04/2025 25/04/2025 25/04/2025 26/04/2025 27/04/2025 28/04/2025 28/04/2025	9/04/2025
12/04/2025 13/04/2025 14/04/2025 15/04/2025 16/04/2025 17/04/2025 18/04/2025 18/04/2025 20/04/2025 21/04/2025 22/04/2025 23/04/2025 24/04/2025 25/04/2025 25/04/2025 27/04/2025 27/04/2025 28/04/2025 27/04/2025 28/04/2025	10/04/2025
13/04/2025 14/04/2025 15/04/2025 16/04/2025 17/04/2025 18/04/2025 18/04/2025 20/04/2025 21/04/2025 22/04/2025 23/04/2025 24/04/2025 25/04/2025 25/04/2025 27/04/2025 27/04/2025 28/04/2025 27/04/2025 28/04/2025 28/04/2025	11/04/2025
14/04/2025 15/04/2025 16/04/2025 16/04/2025 17/04/2025 18/04/2025 19/04/2025 20/04/2025 21/04/2025 22/04/2025 23/04/2025 24/04/2025 25/04/2025 25/04/2025 26/04/2025 27/04/2025 28/04/2025 28/04/2025 29/04/2025	12/04/2025
15/04/2025 16/04/2025 17/04/2025 18/04/2025 18/04/2025 20/04/2025 21/04/2025 22/04/2025 23/04/2025 24/04/2025 25/04/2025 25/04/2025 26/04/2025 27/04/2025 28/04/2025 28/04/2025 28/04/2025	13/04/2025
16/04/2025 17/04/2025 18/04/2025 19/04/2025 20/04/2025 21/04/2025 22/04/2025 23/04/2025 24/04/2025 25/04/2025 25/04/2025 26/04/2025 27/04/2025 28/04/2025 28/04/2025	14/04/2025
17/04/2025 18/04/2025 19/04/2025 20/04/2025 21/04/2025 22/04/2025 23/04/2025 24/04/2025 25/04/2025 25/04/2025 26/04/2025 27/04/2025 28/04/2025 28/04/2025 28/04/2025	15/04/2025
18/04/2025 19/04/2025 20/04/2025 21/04/2025 22/04/2025 23/04/2025 24/04/2025 25/04/2025 26/04/2025 27/04/2025 27/04/2025 28/04/2025 28/04/2025	16/04/2025
19/04/2025 20/04/2025 21/04/2025 22/04/2025 23/04/2025 24/04/2025 25/04/2025 26/04/2025 27/04/2025 28/04/2025 28/04/2025 28/04/2025	17/04/2025
20/04/2025 21/04/2025 22/04/2025 23/04/2025 24/04/2025 25/04/2025 26/04/2025 27/04/2025 28/04/2025 28/04/2025 29/04/2025	18/04/2025
21/04/2025 22/04/2025 23/04/2025 24/04/2025 25/04/2025 26/04/2025 27/04/2025 28/04/2025 28/04/2025 29/04/2025	19/04/2025
22/04/2025 23/04/2025 24/04/2025 25/04/2025 26/04/2025 27/04/2025 28/04/2025 29/04/2025	20/04/2025
23/04/2025 24/04/2025 25/04/2025 26/04/2025 27/04/2025 28/04/2025 29/04/2025	21/04/2025
24/04/2025 25/04/2025 26/04/2025 27/04/2025 28/04/2025 29/04/2025	22/04/2025
25/04/2025 26/04/2025 27/04/2025 28/04/2025 29/04/2025	23/04/2025
26/04/2025 27/04/2025 28/04/2025 29/04/2025	24/04/2025
27/04/2025 28/04/2025 29/04/2025	25/04/2025
28/04/2025 29/04/2025	26/04/2025
29/04/2025	27/04/2025
	28/04/2025
30/04/2025	29/04/2025
	30/04/2025

EPL 43 *	EPL 50 ^					
Discharg	e volume					
	alitres)					
-	0.12					
0.52	0.63					
0.46	-					
0.38	0.82					
0.28	-					
-	0.74					
-	-					
-	0.34					
-	0.58					
-	-					
-	0.44					
0.17	0.33					
-	0.37					
-	0.61					
0.28	-					
-	0.55					
-	0.18					
-	-					
-	-					
-	-					
-	-					
-	0.07					
-	-					
0.43	0.14					
0.56	-					
0.37	-					
0.37	-					
0.46	-					
0.46	-					
_	-					

EPL 44	EPL 45	EPL 47	EPL 48	EPL 49								
	Discharge volume (Megalitres)											
0.21	0.05	0.19	0.06	1.10								
0.25	0.06	0.23	0.08	0.95								
0.22	0.05	0.23	0.09	0.62								
0.14	0.07	0.28	0.10	0.60								
0.04	0.03	0.24	0.07	0.33								
0.19	0.06	0.21	0.10	0.72								
0.30	0.06	0.25	0.07	0.59								
0.46	0.06	0.22	0.09	0.76								
0.48	0.06	0.23	0.05	0.52 0.71 0.71								
0.51	0.08	0.17	0.09									
0.25	0.07	0.18	0.28									
0.41	0.05	0.30	0.08	0.48								
0.27	0.05	0.23	0.04	0.53 0.66								
0.27	0.05	0.39	0.03									
0.59	0.05	0.22	0.08	0.52								
0.29	0.04	0.20	0.25	0.46								
0.16	0.04	0.19	0.09	0.52								
0.28	0.06	0.18	0.05	0.56								
0.28	0.04	0.20	0.07	0.54								
0.31	0.05	0.19	0.09	0.64								
0.36	0.05	0.19	0.10	0.51								
0.50	0.06	0.20	0.06	0.35								
0.41	0.09	0.19	0.03	0.62								
0.28	0.06	0.20	0.02	0.33								
0.19	0.05	0.23	0.08	0.36								
0.27	0.05	0.21	0.08	0.29								
0.47	0.06	0.22	0.02	0.58								
0.20	0.06	0.26	0.05	0.54								
0.49	0.05	0.22	0.09	0.71								
0.22	0.04	0.21	0.07	0.60								

Note: The EPL discharge volume limit for EPL 43 and 50 is 4.32 megalitres per day. Compliance with this criteria was met during the reporting month.

Water not discharged on this day

The maximum flow rate capacity for Lobs Hole STP/PWTP during the reporting month was 8.45 L/s

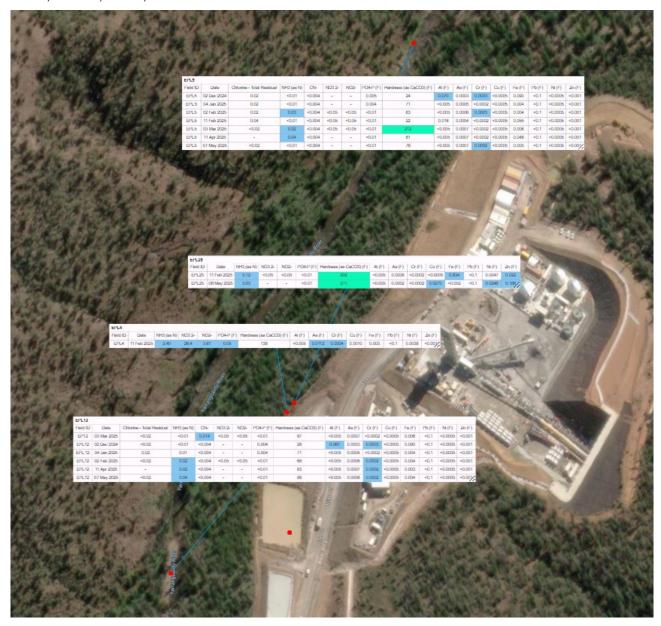
[^] The maximum flow rate capacity for Tantangara STP/PWTP during the reporting month was 11.34 L/s
-- Water not discharged on this day

EPL 21266 In Situ W	Vater Quality	Measurements										
FF, Menority Monthering May 2005 The Laberty Wave Could To Could												
River and Minor Waterco	ourses		Temp (°C)	90 - 110	00 (mg/L)	EC (μS/cm) 30 - 350	TDS (mg/L)	pH 6.5 - 8.0	Redox (mV)	Turbidity (NTU) 2 - 25		
7/5/2025, 7:12 AM	EPLSite ID	Location Description Yarrangobilly River, upstream of the exploratory tunnel and construction pad	Temp (*C) 9.84	DO (%)	DO (mg/t) 9.18	EC (µS/cm)	TDS (mg/L)	рН 8.17	Redox (mV)	Turbidity (NTU)	Field Comments Clear sky, Average flow, Clear water, No recent rain.	Context These results are consistent with previous samples taken for this
7/5/2025, 7:12 AM 7/5/2025, 7:49 AM	EPL6	Wallaces Creek, upstream of Yarrangobilly River and Wallaces Creek confluence	8.14	80.5	9.49	130	84	8.12	228	1.1	Clear sky. Clear water. No recent rain. Lower than usual flow.	location. These results are consistent with our previous samples taken for this
7/5/2025, 7:11 AM	EPL8	Yarrangobilly River, downstream of Lick Hole Gully	9.99	70.5	7.96	138	90	8.11	47	41.3	Clear sunny morning, no recent rainfall event. Water is clear, no edour. No sheen. No signs of	location. Turbidity is elevated, however not uncommon within our data previously recorded. This could potentially affect the slightly lower
7/5/2025, 7:11 AM	EPLS		9.99	70.5	7.96	138	90	8.11	4/	41.5	algae.	DO recorded.
7/5/2025, 7:29 AM	EPL9	Yarrangobilly River, downstream of the accommodation camp and upstream of Taibingo Reservoir	9.3	63.9	7.33	141	92	8.01	119	7.1	Clear surnry morning, no recent rainfall. No visible algae, no sheen, no odour. Water is very clear	These results are consistent with our previous samples taken. The DO results which are below WQO's.
7/5/2025, 7:28 AMR	EPL12	Yarrangobilly River, immediately downstream of portal pad	9.26	68.1	7.82	135	88	8.17	208	5.9	Clear sky. Clear water. No recent rain. Average flow.	These results are consistent with our previous samples taken for this location.
7/5/2025 8:09 AMR	EPL14	Yarrangobilly River, downstream of road construction areas	8.54	73.8	8.62	138	89	8.13	234	5.8	Clear sky. Clear water. No recent rain. Average flow.	These results align with the decrease in temperatures, remaining
77372023,0207402		The state of the s		73.0		130		0.15		3.0	Column on y. Column 1998 (1997). The column of the column	consistent with data we have recorded in previous sample rounds.
7/5/2025, 8:26 AM	EPL15	Yarrangobilly River, downstream of road construction areas	8.73	90.3	10.5	139	90	8.14	238	0.3	Clear sky. Clear water. No recent rain. Average flow.	These results are consistent with our previous samples taken for this location.
7/5/2025, 7:52 AMII	EPL16	Yarrangobilly River, downstream of road construction areas	8.87	63.2	7.32	142	92	8.08	142	6.2	Clear sunny morning, no recent rainfall. Clear water, no visible algae, no sheen, no odour.	These results are consistent with our previous samples taken for this location.
3/5/2025, 2:38 PM	EPL24	Yarrangabiliy River tributary (Watercourse 2), directly downstream of road	14.55	54.2	5.51	956.00	612	6.71	205	4.8	Clear sunny day. No recent rain events. Works continuing to expand F10.5 basin just upstream of sample location. Water is very clear, no odour and no sheen.	Low DO and elevated EC is commonly seen with data recorded from previous sample rounds; these numbers are consistent with these
2/5/2025. 8:48 AMII	EPL26	Eucumbene River downstream of Marica Road	4.43	82.6	10.7	29	19	8	217	9.01	Sunny cool day, Low flow and water level. Horse pool and hoof marks on stream bank, Low	results. The results are consistent with our previous samples taken for this
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								_			turb, confirmed with Hach.	location.
18/5/2025, 10:36 AMII	EPL27	Eucumbere River upstream of Marica Road	6.05	92.8	11.57	21	13	5.92	216	29.4	Windy cold day, low level water, slow flow, evidence of animal activity, no odors, clear water	The low pH although has been recorded in our previous sample rounds, is less commonly seen. The other parameters are consistent with our previous sample rounds.
21/5/2025, 7:34 AMB	EPL30	Kellys Plain Creek, downstream of accommodation camp and laydown areas	7.5	92.9	11.14	32	21	8.09	205	11.6	Clear sunny conditions, frost in the morning with limited rain over the previous week. Clear waterway with no signs of odour or other anomalies.II	Slightly elevated pH is within trends of data recorded from previous samples taken.
21/5/2025, 7:39 AMR	EPL31	Kellys Plain Creek, upstream of accommodation camp and laydown areas	7.59	84.4	10.09	21	14	7.78	244	8.1	Clear sunny conditions, frost in the morning with limited rain over the previous week. Clear waterway with no signs of odour or other anomalies.fl	These results are consistent with previous samples recorded for this location.
21/5/2025, 7:42 AMII	EPL33	Murrumbidgee River, downstream of Tantangara reservoir outlet	9.59	67.1	7.64	21	13	7.59	264	18	Clear sunny conditions, frost in the morning with limited rain over the previous week. Green coloured waterway, looks to be algae with no signs of odour or other anomalies.	These results are consistent with results previously recorded for this location, low DO and EC is commonly recorded here and therefore isn't outside of results.
21/5/2025, 7:46 AMII	EPL34	Nungar Creek, upstream of Tantangara Road	7.2	82.2	9.93	23	15	7.52	277	5.9	Clear sunny conditions, frost in the morning with limited rain over the previous week. Clear waterway with no signs of odour or other anomalies.	These results are consistent with results previously recorded for this location, low DO and EC is commonly recorded here and therefore Isn't outside of results.
21/5/2025, 7:50 AM	EPL35	Nungar Creek, downstream of Tantangara Road	7.38	65.8	7.91	22.0	14	7.43	262	4.5	Clear sunny conditions, frost in the morning with limited rain over the previous week. Clear waterway with no signs of odour or other anomalies.	These results are consistent with results previously recorded for this location, low DO and EC is commonly recorded here and therefore isn't outside of results.
27/5/2025, 11:13 AM	EPL 36	Camerons Creek, upstream of works in Rock Forest	8.58	99.8	11.66	47	30	6.83	298	23.5	Sunny day, a bit turbid water it can be attributed to the recent precipitations, no odour	These results are consistent with previous samples recorded for this location.
	EPL 37	Camerons Creek, downstream of works in Rock Forest	6.77	101	12.33	60	39	7.28	305	15.6	Sunny day, clear water, the stream a bit more turbulent it can be attributed to the recent	These results are consistent with previous samples recorded for this
27/5/2025, 9:35 AM	1										precipitation, no smell	location.
26/5/2025, 11:36 AMII	EPL52 EPL53	GF01 leachate basin GF01 surface water upstream east									DRY	DRY This location is dry.
- :	EPLS4	GF01 surface water upstream east GF01 surface water upstream west						-			DRY DRY	This location is dry. This location is dry.
19/5/2025, 9:46 AME	EPLSS	GF01 surface water downstream									DRY	This location is dry.
	EPL67	Nungar Creek surface water downstream west from Tantangara emplacement area									DRY	Location is dry.
	EPL71	Surface water downstream of Marica emplacement									DRY	This location is dry.
EPL 21266 In Situ Wa		easurements										
EPL Monthly Monitoring 5/5/2025, 11:53 AMII	May 2025 EPL84	i 8 Basin	18.2	123.6	11.62	969.00	620	9.18	61	1000	Clear sunny day, no recent rainfall events. Basin level very low, soon to be desilted and relined. Water is very brown & turbid. Exceeding 1000NTU. Slight odour due to low water	Elevated EC and pH have been recorded in previous sample rounds in this location; therefore these results are not outside of range
1) 1) 1013, 1133 Amii		W Manual I	10.1	123.0	****						level.	recorded previously. Low DO, elevated EC and pH have been recorded in previous sample
24/5/2025, 11:S1 AMII	EPL85	MY07 Basin	12.17	50.4	5.4	730	467	8.97	133	1,000.00	Overcast day, Recent rain event. Water brown and turbid over 1000 NTU. Water has no odou or sheen. Minor inflows off road. Basin at 75%.	rounds in this location; therefore these results are not outside of range recorded previously.
24/5/2025, 12:02 PMII	EPL86	LHGO1 Basin	12.32	58.7	6.26	929.00	595	8.39	152	448	Overcast day. Recent rain event. Water slightly turbid. No odour or sheen. No current inflows	Low DO, elevated EC and pH have been recorded in previous sample rounds in this location; therefore these results are not outside of range recorded previously.
12/5/2025, 10:29 AMB	EPL98	Rock blanket diversion monitoring under GFO1 liner									DRY	Location is dry.
2/5/2025, 11:18 AMR	EPL99	Marica Leachete Basin-Turkey's Nest	10.47	60.6	6.76	354	230	10.62	-43	63.6	Clear sunny day. No odor. Milky colour. Basin half full.	Low DO, elevated EC and pH have been recorded in previous sample rounds in this location; therefore, these results are not outside of range recorded previously.
23/5/2025, 2:51 PMH	EPL100	Marica Lower Leachate Basin USS Shaft	9.72	60.9	6.9	541	246	8.62	132	991	Rainy day. High turb. Brown water. No odor. Minor oily sheen visible.	Low DO, elevated EC and pH have been recorded in previous sample rounds in this location, therefore these results are not outside of
												range recorded previously. Elevated EC and pH have been recorded in previous sample rounds in
2/5/2025, 11:28 AMI	EPL101	Marica Leachate Basin Spoil Pad	8.82	92.5	10.72	635	406	9.06	84	89.7	Sunny clear day. Milky coloured water. Algae. Fuel spill into basin 3weeks ago. Basin water level very low.	this location, therefore these results are not outside of range recorded previously.
3/5/2025, 8:15 AMII	EPL106	Ravine Bay Leachate basin 1	11.81	90.1	9.71	1,460.00	936.00	8.92	151	192	Cold clear morning. No recent rain events. Basin level is lower than normal. Water is clear with suspended solids. No odour. No sheen.	Elevated EC and pH have been recorded in previous sample rounds in this location, therefore these results are not outside of range recorded previously.
16/5/2025, 10:50 AMIZ	EPL110	Upstream monitoring of Ravine Bay emplacement area									DRY	Location dry.
	EPL118	Tavine Bay Leachate basin 2									DRY	Location dry.
	EPL120	Ravine Bay Leachate basin 4									DRY	Location dry.
28/5/2025, 9:04 AM	EPL122	SFO1 Drainage Line (Formerly EPL 55b)	11.64	87.5	9.49	658	421	8.64	244	499	Recent heavy rain. More flow than usual, Milky colour, High turb.	The consistently low levels found when sampling this location can impact sample results, though we have consistently seen these results in previous sample rounds recorded.
Table 2 - Reservoir Water C Talbingo and Tantongara R	Quality Data		Temp (*f)	DO (%)	DO (me/h)	Water Quality EC (uS/cm)	Objectives (see not TDS (mz/L)	te 2)	Reday (mV)	Turbidity (NTI)	1	
		Location Description					TDS (mg/L)			Turbidity (NTU) 1 - 20		Context
0ate and Time 4/5/2025, 8:46 AMII	EPLSite ID	Location Description Falbingo Reservoir, downstream of road works and upstream of water intake point	Temp (*C) 14.96	59.7	DO (mg/L) 6.02	EC (µS/cm)	TDS (mg/L)	7.58	Redox (mV)	Turbidity (NTU)	Peed Comments Clear sunny morning, no recent rainfail. Bit of dust across surface. No odour, water is clear	Results including the lower DO and EC results lie within data records for previous sample rounds.
455007											Clear sunny morning, no recent rainfall. Less algae then previous month,	Results including the lower DO and EC results lie within data records
4/5/2025, 8:32 AM	EPL11	Talbingo Reservoir, downstream of outlet	14.97	57	5.75	50	32	7.47	206	5.2	no odour, no sheen.	for previous sample rounds.
25/5/2025, 9:14 AM□	EPL28	Fantangara Reservoir, upstream of works in the mouth of the Murrumbidgee River	8.37	104.7	12.29	31	20	7.26	318	13.9	Sunny day. Heavy recent rainfall. Greenish, grey water colour. No odor. Hach meter turb	Results including the lower DO and EC results lie within data records for previous sample rounds.
25/5/2025, 9:43 AMII	EPL29	Fantangara Reservoir, downstream of works area and upstream of lower Murrumäldigee River	9	104.1	12.03	30	20	7.19	349	17.3	Heavy recent rainfall. No odor. Greenish grey water colour. Less algae tham previous month. Hach meter turb.	These results are consistent with previous samples recorded for this location .
25/5/2025, 9:36 AMIX	EPL32	Fantangara Reservoir, Tantangara Intake. Downstream of construction works	8.88	76.3	8.85	30	20	7.22	353	17.7	Heavy recent rain. Green grey water colour. No odor. Hach meter turb.	These results are consistent with previous samples recorded for this

EPL 21266 In Situ Water Quality	Measurements

EPL Monthly Monitoring	g May 2025											
17/5/2025, 12:40 PME	EPL38	Tantangara Reservoir, variable location dependant on tide and reservoir levels. Between the emplacement area and the ancillary facilities for emplacement activities	13.16	68.6	7.21	23	25	7.63	243	40.3	Clearer water, windy breeze, sunny day, cool temp. No recent rain. No odors. Green colour- surface of water is clear.	The low DO, EC, and higher turbidity seen within this round is consistent with the water levels of the reservior at the time of samples taken. These results still remain within range from previously recorded samples taken.
17/5/2025, 9:04 AMB	EPL39	Confluence of Nungar Creek and Tantangara Reservoir, variable location dependent on tide and reservoir levels. Upstream of Tantangara construction works	9.63	68.6	7.81	27	18	8.76	156	22.6	Low level water, slow flow, cloudy foggy morning. No sun. Some bubbles on surface. Evidence of duck activity in the stream.	Low DO and EC could be attributed to the algae bloom recorded near sample location, but isn't outside of ranges we've recorded in previous samples taken in this location.
4/5/2025, 11:56 AMII	EPL40	Confluence of the upper Murrumbidgee River and Tantangara Reservoir, variable location dependent on tide and reservoir levels. Upstream of works	10.9	96.7	10.7	40.4	36	8.31	138.4	4.38	Taken from shoreline, reservoir too low for boat access. Clear flowing water. No odour or sheen.	These results are consistent with previous samples recorded for this location.
25/5/2025, 10:02 AMII	EPL 46	Tantangara Reservoir, diffuser outlet discharging into Tantangara Reservoir from Tantangara STP/PWTP	8.8	84.3	9.8	34	22	7.1	367	0.8	Heavy rain in recent days. Greenish grey water colour. Less algae than previous months.	These results are consistent with previous samples recorded for this location.
25/5/2025, 9:49 AMB	EPL 51	Tantangara Reservoir, downstream of Tantangara STP/PWTP diffuser outlet	8.94	85.6	9.91	30	20	7.18	349	14.3	Heavy recent rain. Green grey water colour. Less algae than previous months. Hach meter turb.	These results are consistent with previous samples recorded for this location .
4/5/2025, 8:01 AMII	EPL107	Upstream monitoring of Ravine Bay emplacement area within Yarrangobilly River	15.03	63.9	6.44	28	18	7.47	197	10.1	Clear sunny morning, no recent rainfall. Less algae then previous morth. No odour, no sheen	These results are consistent with previous samples recorded for this location .
4/5/2025, 7:49 AMII	EPL108	Monitoring of Ravine Bay emplacement area (center of PSE) within Yarrangobilly River	15.27	75.3	7.55	24	26	7.5	192	18	Clear sunny morning. No recent rainfall. Less algae then previous month, no odour, no sheen.	These results are consistent with previous samples recorded for this location .
4/5/2025, 7:40 AMII	EPL109	Upstream monitoring of Ravine Bay emplacement area within Yarrangobilly River	14.6	84.4	8.62	25	16	7.63	186	21.4	Sunny day, clear morning. Less algae then previous months. Clear water. No odour, no sheen, no recent rain	These results are consistent with previous samples recorded for this location .
Table 3 - Treated Water Qu	Quality Data					Water Quality	Objectives (see no	te 3)				
Talbingo			Temp (°C)	DO (%)	DO (mg/L)	EC (µ5/cm)	TDS (mg/L)	pH	Redox (mV)	Turbidity (NTU)		
						700		6.5 - 8.0		25		
Date and Time E	EPL Site ID	Location Description	Temp (°C)	DO (%)	DO (mg/L)	EC (µ5/cm)	TDS (mg/L)	pH	Redox (mV)	Turbidity (NTU)	Field Comments	Context
25/5/2025, 9:21 AMII	EPL41	Lobs Hole STP/PWTP Final Effluent Quality Monitoring Point. Downstream of final treatment, prior to discharge to Talbingo Reservoir.	14.59	68.7	6.99	16	20	8.01	147	18.9	Nitrile gloves, alcohol wipes, correct methodology with QC sampling. QAI and 2 taken from here too. Water is very clear, no odour. Water was purged for 2 minutes before sampling.	These results are consistent with previous samples recorded for this location .
Table 4 - Treated Water Qui	unlity Data					Water Quality	Objectives (see no	20.21			1	
Tontongara	and one		Temp (°C)	DO (%)	DO (mg/L)	EC (µS/cm)	TDS (mg/L)	pH	Redox (mV)	Turbidity (NTU)		
						200		6.5-8.0		25		
Date and Time E	EPL Site ID	Location Description	Temp (°C)	DO (%)	DO (mg/L)	EC (µ5/cm)	TDS (mg/L)	pH	Redox (mV)	Turbidity (NTU)	Field Comments	Context
26/5/2025, 9:26 AMII	EPL50	Tantangara STP/PWTP Final Effluent Quality Monitoring Point. Downstream of final treatment, prior to discharge to Tantangara Reservoir.	7.3			46.18		7.58		0.39	Dewatering team completed sampling at 1:30am on 25/05/2025. Institu readings are from their fixed unit, not Horiba or YSI. No anomalies noted.	These results are consistent with previous samples recorded for this location .
Table 5 - Groundwater Quality Obta Water Quality Obectives (see note 1)												
	Table 5 - Groundwater Quality Data GF01 Surface Water and Groundwater					wrater quality				Turbidity (NTU)		
Table 5 - Groundwater Qua GF01 Surface Water and Gr			Temp (°C)	DO (%)	DO (mg/L)	FC (uS/cm)	TDS (me/L)					
			Temp (°C)	DO (%)	DO (mg/L)	EC (µS/cm) 30 - 350	TDS (mg/L)	pH 6.5 - 8.0	Redox (mV)	Turbidity (NTU)	<u> </u>	
GF01 Surface Water and Gr	Groundwater			-		30 - 350		6.5 - 8.0				h
		Location Description Wallace Creek Bridge	Temp (°C) Temp (°C) 16.56	DO (%) DO (%) 84.9	DO (mg/t) DO (mg/t) 8.26		TDS (mg/L) TDS (mg/L) 586		Redox (mV)	Turbidity (NTU)	Trield Comments Overcast, Soil over well cap, No recent rain, No ofour, SWI 3.99. Sightly fusbal, Faint Metallic until Metalli	Context Elevated EC and pH are within the previously recorded range for this location. Presence of sediment and increased turbidity suggests bore is due for development.
GF01 Surface Water and Gr	Groundwater	Location Description		-		30 - 350		6.5 - 8.0				

EPL 21266 In Situ Water Quality Measurements

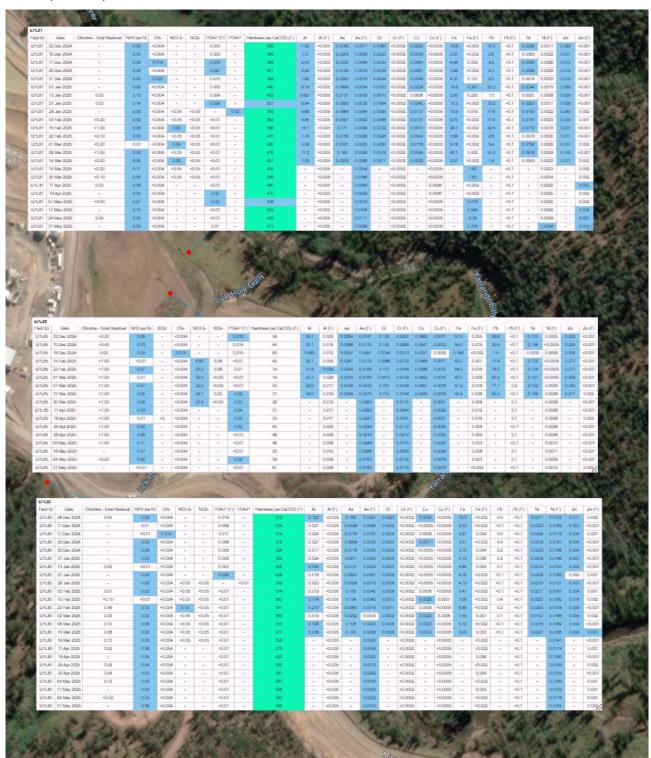

March Marc	5 In Situ Water Quality M ly Monitoring May 2025	y Measurements										
10,700, 12,71,140 10,15		Portal Access						-			Bore cap underwater. Uncontaminated sample not possible.II	-
12.00 12.0	S3 PMII EPL25	Portal Access	15.51	89.2	8.88	420	273	8.16	-43	60.3	Overcast day: No recent rain. SWL 3.71. Water over ground at monument base. Slightly turbid. Metallic sediment in hydrasleeve. Slight metallic smell	Elevated EC is within historical range. Increased pH and turbidity potentially due to surface water ingress.
10.700. 5 11.860 PAT 19.71 PAT optimizer west groundwater	23 AMII EPLSG	GF01. Upstream east groundwater well	12.62	25.7	2.73	234	152	7.9	102	22		Elevated EC and pH are within historical range. Fluctuations in thes values can potentially be attributed to surface water ingress due to degradation of plinth. Due to the final design of the PSE, this site no longer be representative of upstream conditions.
10.000 1	9:11 AMR EPLS7	GF01 upstream west groundwater well	12.72	22.8	2.42	226	147	8.69	-96	85.7	No oders, no colour, clear water, no prev rainfall, no works going on today.Il	Elevated EC and pH is within the previously recorded range. Fluctuations in these values can potentially be attributed to surface water lagress due to degradation of plinth. Due to the final design the FSC, this site may no longer be representative of upstream conditions.
17/1006 13/1006 1	9:48 AME EPLS8	GF01 Downstream Groundwater well	15.39	25.2	2.51	936	599	5.97	235	61.3	Water was warm, clear, odorless, no rain prev, no works current at time of sample	Exceedances in pH and EC are within the previously recorded rang Site has been reported as impacted by GF01.
11-20 11-2	9:23 AMI2 EPL68	Leachate detection BH downstream East	11.68	56	6.08	15	9	6.6	274	18.9		Results are consistent with the previously recorded range
	9:35 AMIZ EPL69	Tantangara groundwater downstream East	11.28	54.2	5.94	30	19	6.56	292	36.5	No odors, clear water with slight sediment that is orange in colour. No prev rainfall, foggy morning?!	Results are consistent with the previously recorded range
1.00 1.00	12:23 PM3 EPL70	Tantangara groundwater upstream	10.84	53.4	5.91	134	87	6.5	370	45.2	Rainy day, rain overnight, some sediment in the bottom of the sleeve, no odour?!	Results are consistent with previously recorded data. Location upstream of any works.
15.2 15 15 15 15 15 15 15 15 15 15 15 15 15	04 AMII EPL 72	Marica groundwater upstream	8.84	52.8	6.13	58	38	6.52	-2	54.3	SWL 37.05m. Sunny cool day. No odor. Small amount of sediment at bottom of hydrasieeve.?!	Results are consistent with historical range. Location upstream of a works.
No. 150, 124 105 105 105 105 105 105 105 105 105 105	, 2:18 PMII EPL73	Marica groundwater downstream									•	This site has been decommissioned.
1.135 1.12 1.189 1.181 1.135 1.12 1.189 1.181 1.150 1.12 1.189 1.181 1.180 1.181 1.180 1.181 1.180 1.181 1.180 1.181 1.180 1.181 1.180 1.181 1.180 1.180 1.181 1.180 1.1	12:42 PMB EPLBO	LHG groundwater upstream	15.2	19.5	1.95	924	591	6.73	47	229		Location upstream of works, representative of background conditions. Elevated EC is within the previously recorded range.
17.64 1.55 1.56	SB AMI EPLE1	LHG groundwater downstream	13.35	18.2	1.89	851	545	6.87	2	1000	exceeding 1000 NTU. Usually sample taken with hydro sleeve however bore pump is installed	High NTU recorded due to sampling methodology. High EC consists with upstream site.
12-12 12-13 12-1	1:20 AMIS EPL82	MY groundwater upstream	17.44	13.7	1.31	2340	1500	6.74	-2	47.1	SWL: 9.07m Clear sunny day, no recent rainfall events. Clear water, no edour. High EC as per previous samples. II	Location upstream of works, representative of background conditions. Elevated EC is within the previously recorded range.
1.5.5 1.5.	2:29 PMI EPL83	MY groundwater downstream	17.41	6.34	1.83	529	339	6.34	39	19.3	Sunny, partly cloudy, no recent rainfall. No odour, clear water.	Low pH and elevated EC within previously recorded data range and consistent with upstream locations.
12-3 128 58 59 79 79 22 301 230 200 200 200 200 200 200 200 200 200	10:57 AMII EPL87	MT groundwater downstream	15.63	18.8	1.87	827	529	6.4	193	92.8		Low pH and elevated EC within previously recorded data range and consistent with upstream locations.
1.00 1.00	18 PMB EPL88	MY groundwater downstream	17.05	25.9	2.5	716	458	6.9	-76	2.2	SWL: 3.43m Cloudy day, no recent rainfall. Sulphur odour, clear water.2	Elevated EC within previously recorded data range and consistent with upstream site.
1/1/2013_1-8/3 PMR 19-130 Orange productant development 13-28 19-130 19-	2:37 AMII EPL89	LHG groundwater downstream	14.94	24.6	2.48	320	208	6.91	163	112	SWL: 3.3m Clear sunny day. No recent rain events. Water is very clear, slightly viscous. No odour.	These results are consistent with previous sampling rounds.
15 15 15 15 15 15 15 15	40 PMS EPL 90	GF01 groundwater downstream	15.26	90	9.02	66	43	8.18	169	1000	Overcast day. Bore pump not operational. Slightly turbid. No odour.	turbidity due to temporary sampling methodology (foot valve and
19.12 GPS2 groundwater downstream 19.13 77.4 8.00 467 223 8.13 20 362 Program for a purely a random, from seathered town such rest own ground on the Clear of Application (Conference on	B:00 AMR EPL 91	GF01 groundwater downstream	14.22	23.9	2.45	192	125	6.87	2	37.4		These results are consistent with previous sampling rounds.
91-70005, 831 AM PL 91-33 GFSI groundwater downstream 13.09 18.6 2.06 208 133 7.1 150 953 makey year glasticine was justine control or control or any contro	3:39 AMII EPL 92	GF01 groundwater downstream	10.18	77.4	8.69	497	323	8.13	30	161		These results are consistent with previous sampling rounds. Elevat turbidity to be managed through upcoming bore development program.
(A)V(2023, 8:59 AM	BS1 AM EPL 93	GF01 groundwater downstream	13.09	19.6	2.06	208	135	7.1	150	915		These results are consistent with previous sampling rounds. The hi turbidity could be attributed to sampling methodology (foot valve and hose).
19/2025, 596.MV 87.55 (972) groundwater downstream 55.3 (51.		GF01 groundwater downstream	13.11	33.4	3.51	150	97	6.85	0.1	119	ORPMV = -10, CLEAR WATER LITTLE COLOUR. no prev rain. No odors.	These results are consistent with previous sampling rounds.
	9:56 AM EPL 95	GF01 groundwater downstream	15.3	101.3	10.11	1,001.00	644	6.09	238	24.5	No odor, no prev rainfall, no works current at time of sample, no colours	These results are consistent with previous sampling rounds.
9/3/2015, 1006 AM EPL 56 GRS groundwater downstream 14.32 50.3 3.08 811 519 7.32 197 955 Orange colour, revenil Ne bandfill. Open at the top of born, ro construction works happening Theorem results believed to the construction of the construction works happening at time of sample.	10:06 AM EPL 96	GF01 groundwater downstream	14.52	30.3	3.08	811	519	7.32	197	915		These results are consistent with previous sampling rounds. The hi turbidity could be attributed to sampling methodology (foot valve and hose).
	LD:36 AM EPL 97		15.22	54.8	5.49	424	276	6.89	213	23.7	Noodors, no prev rainfall, clear water, no sediment, no need to purge.	These results are consistent with previous sampling rounds.
EPL322 Tall Grandwater monitoring associated with the Marica emplacement area on Marica This location This location	- EPL102	Groundwater monitoring associated with the Marica emplacement area on Marica Trail									EPL Point Decommisioned	This location has been decommissioned.
	10:35 AM EPL103	Upstream groundwater monitoring west of the Tantangara emplacement area	11.44	71.7	7.82	34	22	6.21	285	33.3	No odor, no sediment, clear water. No prev rainfall.	The results, including the low pH is consistent with samples previously taken

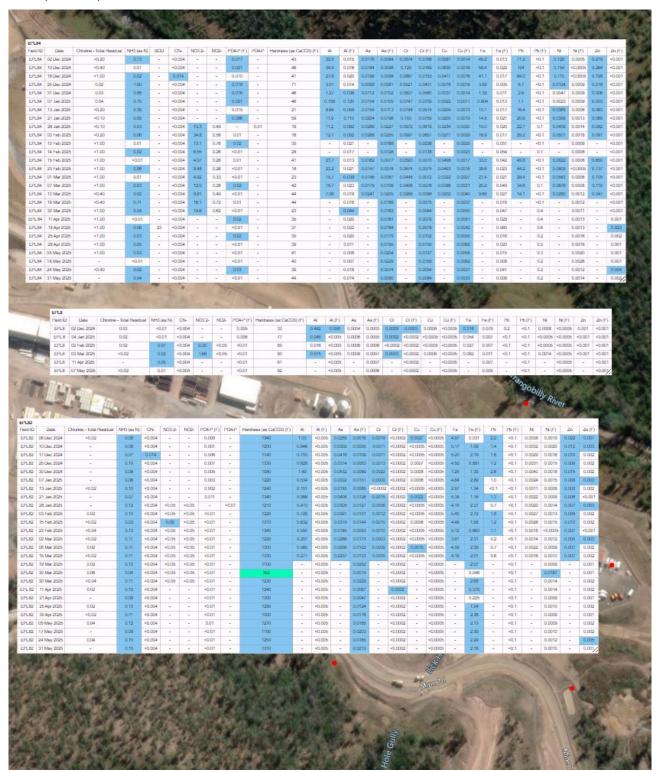
EPL 21266 In Situ Water Quality Measurements

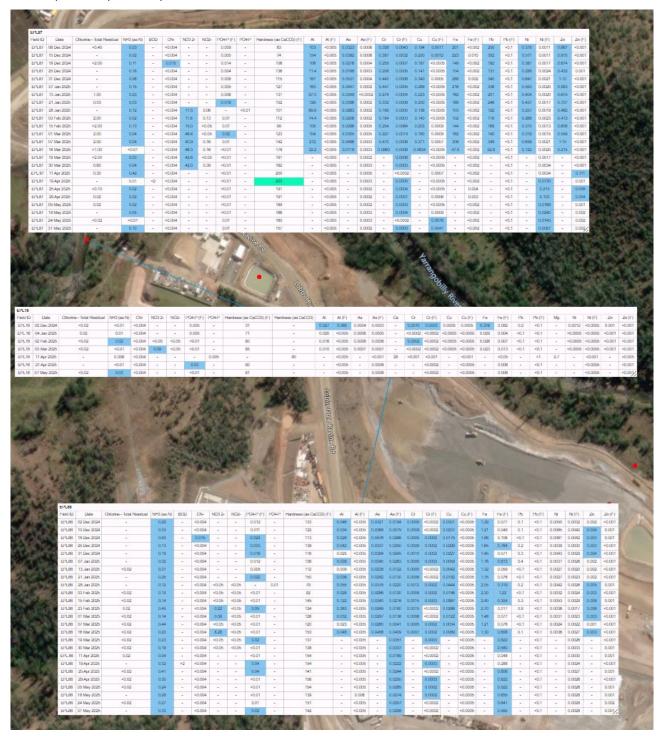
EPL Monthly Monitorin	g May 2025											
17/5/2025, 10:00 AM	EPL104	Downslope groundwater monitoring east of the Tantangara emplacement area	11.66	44.9	4.87	41	26	6.27	294	23.7	No prev rainfall no odors, clear hydra sleeve - no sediment. No works happening today.	The results, including the low pH is consistent with samples previously taken
24/5/2025, 11:16 AMII	EPL105	Downslope groundwater monitoring east of the Tantangara emplacement area	11.1	95.9	10.55	131	85	6.41	386	177	Rainy day, rain overright, no smelly, water taken from the pump	The results, including the low pH is consistent with samples previously taken
3/5/2025, 9:34 AM	EPL113	Upstream east monitoring of Ravine Bay emplacement area	12.26	22.5	2.41	129	84	6.13	120	556	SWL: 3.04m Clear cold morning. Continual works ongoing at PSE. No recent rain events. Water is slightly turbid, a bit of a milky consistency, no odour.	The results, including the low pH is consistent with samples previously taken
3/5/2025, 9:07 AM	EPL114	Upstream west monitoring of Ravine Bay emplacement area	12.05	26.7	2.87	341	221	7.27	-28	34.8	SWL: 31.91m Clear cold morning. No recent rain events. Water is clear, no odour. Continual works ongoing at PSE	These results are consistent with previous sampling rounds.
3/5/2025, 9:56 AM	EPL115	Downstream east monitoring of Ravine Bay emplacement area	12.55	18.7	1.99	316	206	7.4	61	176	SWL: 11.2m Cold clear morning. No recent rain events. Ground disturbance nearby with a digger in the basin. Water is clear, no odour.	These results are consistent with previous sampling rounds.
3/5/2025, 7:50 AM	EPL116	Downstream west monitoring of Ravine Bay emplacement area	12.8	61	6.45	167	108	7.27	188	1,000	SWL: 8.33m. Verycold, clear morning. Frost on the ground. Water is brown turbid exceeding 1000 NTU, no odour. Recent ground disrurbance nearby at spillway. Access created for mulch distrubution	These results are consistent with previous sampling rounds. High turbidity potentially due to sampling methodology (foot valve and hose).
3/5/2025, 8:50 AM	EPL117	Downstream monitoring of Ravine Bay emplacement area	12.34	17.6	1.88	122	79	6.72	-25	167	SWI: 15.90m. Cold clear moming. No recent rain events. Water is slightly cloudly, milky viscous consistency, clogging the large filters up, no odour. Ongoing works at PSE	These results are consistent with previous sampling rounds.
10/5/2025, 8:41 AME	EPL123	GW Upstream W Rockforest	11.52	48.3	5.26	36	23	6.59	236	1000	SWL-7.88m, sunny day, turbid water, sediment in the bottom of the sleeveil	These results are consistent with previous sampling rounds. High turbidity potentially due to sampling methodology (foot valve and hose).
21/5/2025, 8:01 AMB	EPL124	GW upsteam (NE) Rockforest	12.18	63	6.76	22	14	5.82	328	193	Clear sunny conditions, frost in the morning with limited rain over the previous week. Minor/moderate turbid sleeve, with no signs of odour or other anomalies.III	The low EC and pH is within range for previously recorded data for this location.
27/5/2025, 10:59 AMII	EPL125	GW Downstream (5) Rockforest	11.44	92.4	10.09	109	71	6.34	348	902	Sunny day and cold, turbid water and sediment placed at the bottom of the sleevel!	These results are consistent with previous sampling rounds.
10/5/2025, 9:54 AMR	EPL126	GW Downstream (SE) Rockforest	10.42	17.6	1.07	307	200	7.57	214	1000	SWL6.18M Milky colour sediment No odor No prev rainfall®	These results are consistent with previous sampling rounds. High turbidity potentially due to bore requiring development.
27/5/2025, 9:21 AMII	EPL127	GW Downstream Rockforest	11.34	38.1	4.16	118	77	6.8	340	39.8	Sunny day, very cold, no odors,clear water?	These results are consistent with previous sampling rounds.
		the Yarrangobilly River and Minor Watercourses refer to the default trigger values for p										
Note 2: Water Quality Obj	jective values for	Talbingo Reservoir are the default trigger values for physical and chemical stressors in	south-east Austra	ilia (freshwat	er lakes and reserv	voirs) that are report	ted in Tables 3.3.2 a	nd 3.3.3 of	ANZECC/ ARMCANZ	(2000).		
Note 3: Water Quality Obj	jective values Tre	ated Water reference the predicted values for physical and chemical stressors from the	treatment plant	as presented	in the Main Work	s EIS.						
Note 4: Water Quality Obj	on A. Water Casting Objective values for granufundation reference the default or signar values for physical and chemical interaction in south desault all products of a deservation of the contraction of t											

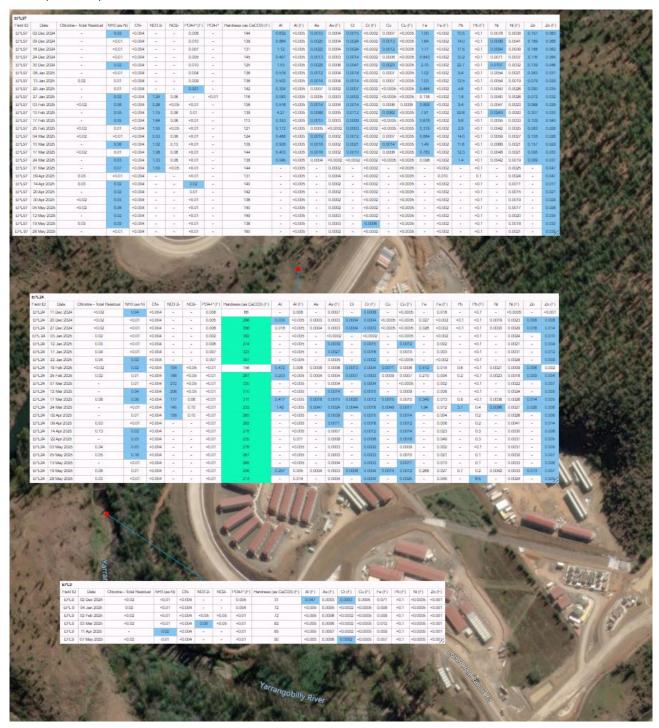
APPENDIX C - EXCEEDANCE MAPS

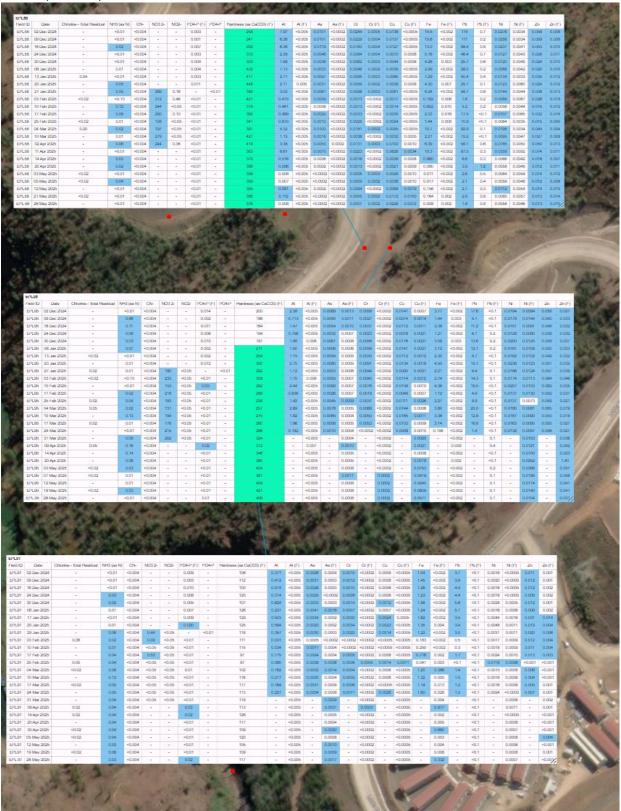
EPL5, EPL25, EPL4, EPL12

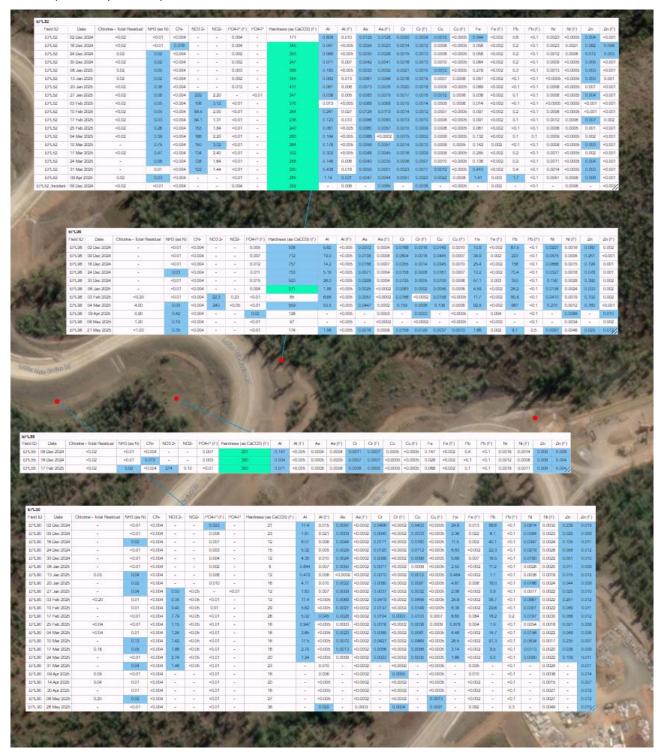

EPL1, EPL2, EPL6


EPL14, EPL89

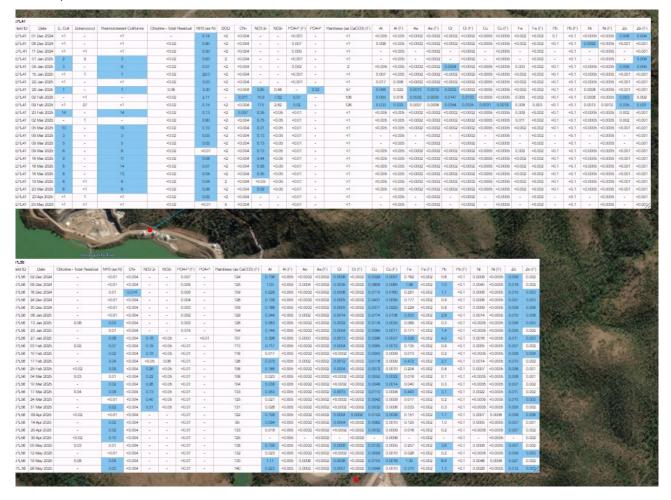

EPL80, EPL81, EPL85

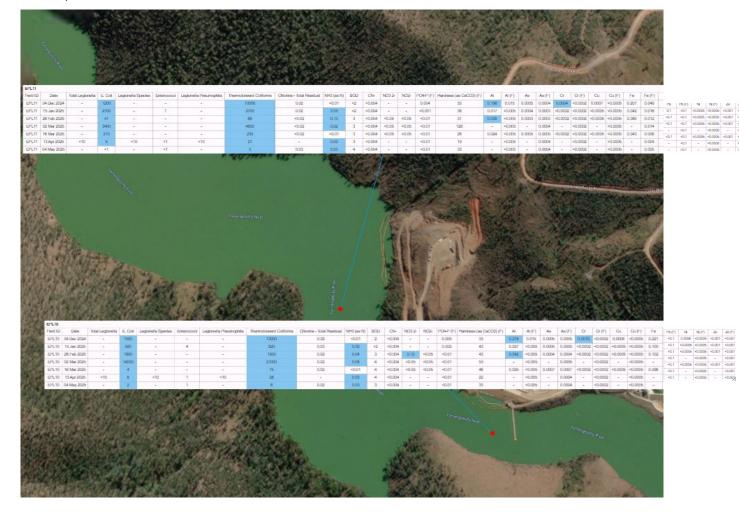

EPL8, EPL82, EPL84


EPL16, EPL87, EPL88,


EPL9, EPL24, EPL97

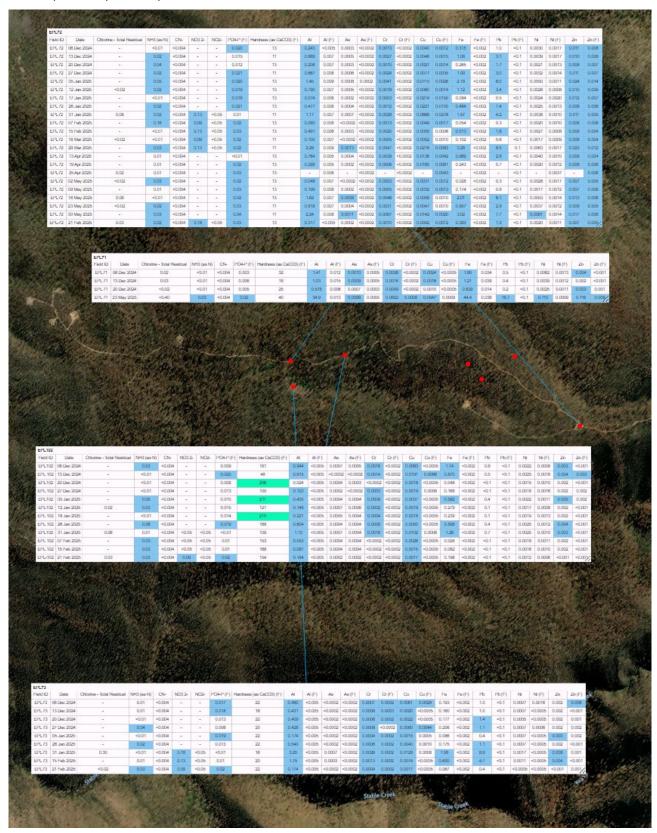
EPL58, EPL91, EPL98


EPL52, EPL96, EPL55, EPL90

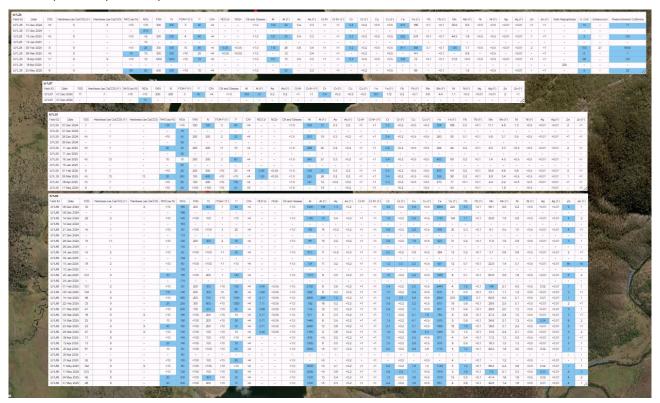

EPL92, EPL93, EPL94

EPL41, EPL56

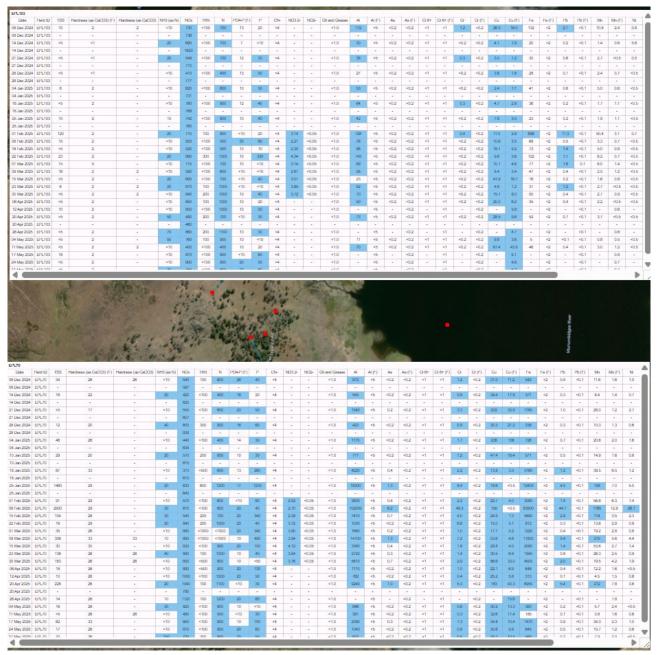
EPL10, EPL11


EPL107, EPL108, EPL115, EPL117

EPL106, EPL109, EPL116


EPL71, EPL72, EPL73, EPL102

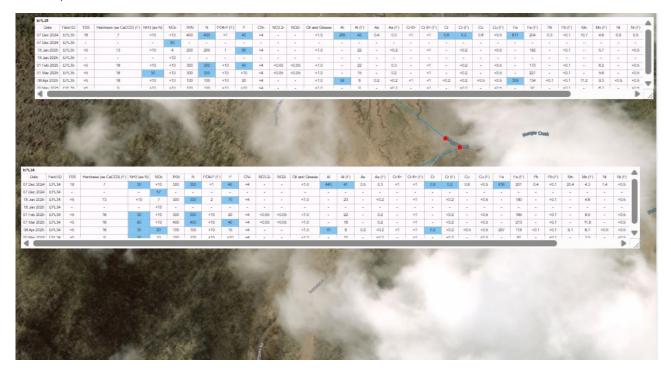
EPL99, EPL100, EPL101

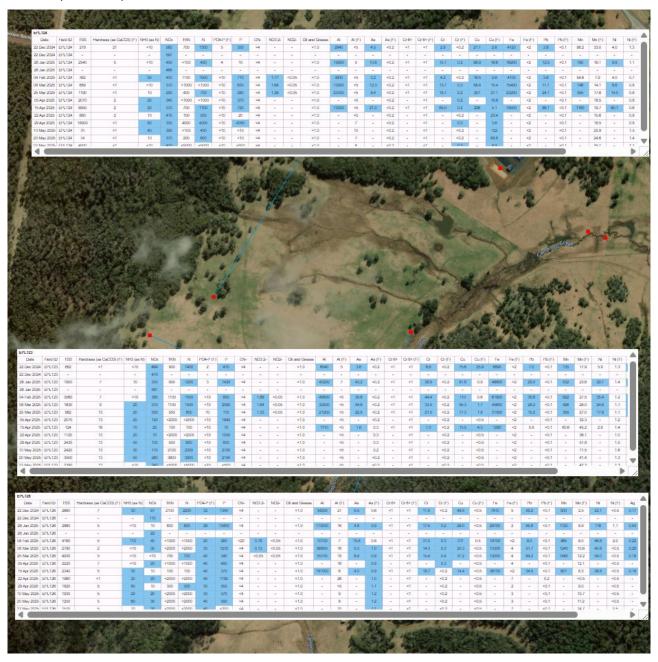

EPL28, EPL39, EPL67, EPL69

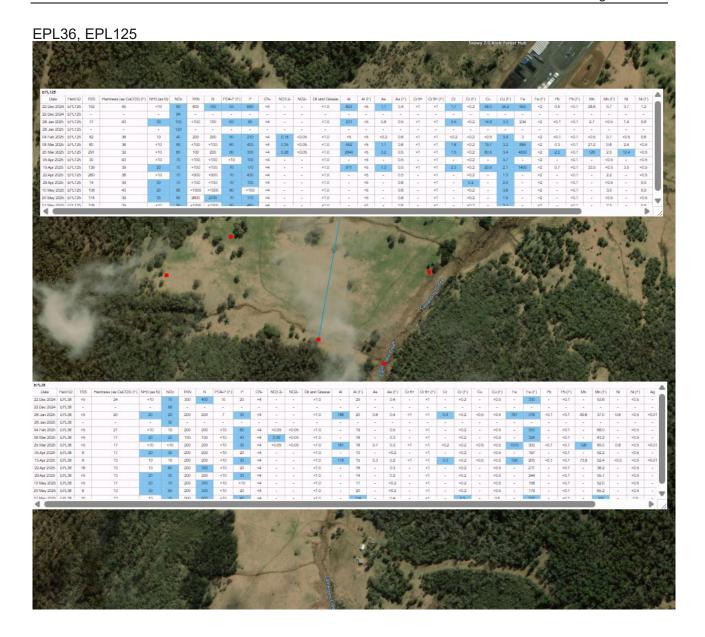
EPL70, EPL104


EPL70, EPL103

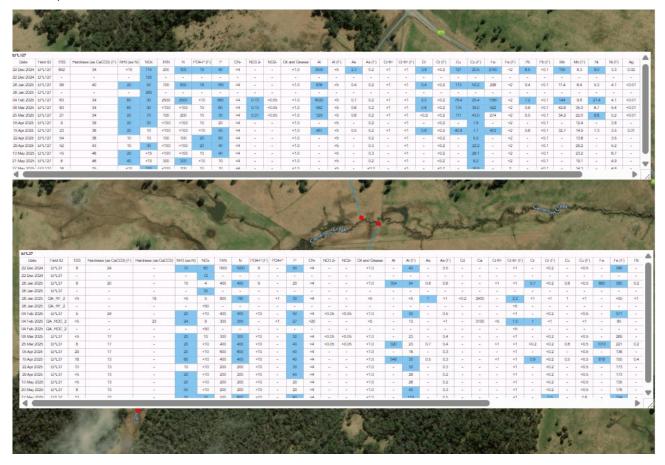
EPL32, EPL38


EPL29, EPL51


EPL30, EPL31



EPL34, EPL35



EPL123, EPL124, EPL126

EPL37, EPL127

