

webuild | clough | lane

REPORT

QUARTERLY ENVIRONMENTAL WATER REPORT DECEMBER 2024 – FEBRUARY 2025

S2-FGJV-ENV-REP-0127

REV B

JUNE 2025

This Report has been prepared to satisfy the reporting requirements in the Main Works – Water Management Plan (WMP) and to meet Condition of Approval (CoA) 31(c)(d) of the Infrastructure Approval Schedule which requires publicly available reporting of the outcomes of the WMP. The Report provides commentary on the performance of the monitoring programs as part of the WMP.

Revision Record

Rev.	Date	Reason for Issue	Responsible	Accountable	Endorsed	
В	05/06/2025	Updated to address SHL comments	S. Lang	E. Porter	D. Drummond	

Document Verification

RACIE Record

R responsible:	Name: Scott Lang Job Title: Environmental Coordinator
	Signed:
	Date: 04/07/2025
A ccountable:	Name: Ellen Porter Job Title: Environment Manager
	Signed:
	Date: 04/07/2025
C onsulted:	See distribution list on Page 3.
I nformed:	See distribution list on Page 3.
E ndorsed:	Name: Dave Drummond Job Title: QHSE Director Justin Tannock
	Signed: 04/07/2025
	Date:

RACIE Terms

IVA	ie remis
R	Responsible
K	The person who actually produces the document.
Α	Accountable
A	The person who has the answer for success or failure of the quality and timeliness of the document.
С	Consulted
_ C	Those who must be consulted before the document is published.
	Informed
ı	Those who must be informed after the document is published.
Е	Endorsed
	Those who must approve the document before publication.

Document Distribution Consulted Distribution List

Date	Format (1)	Addressee / Job Title	Company	Location (2)

Informed Distribution List

Date	Format (1)	Addressee / Job Title	Company	Location (2)
February 2025	OHC	Central Archive	FGJV	Cooma

NOTE: (1) OHC – Original Hard Copy / EC–Electronic Copy / HC – Hard Copy / Aconex – Electronic Document Management System

Revision Tracking

	ovicion macking					
Rev.	Date	Description of Revision				
Α	30/03/2025	Issued for information				
В	05/06/2025	Updated to address SHL comments				

CONTENTS

ABB	REVIAT	IONS AND DEFINITIONS	5
1.	INTRO	DUCTION	6
2.	PURPO	OSE	6
3.	OVER\	VIEW	7
3.1.	Reporti	ing Period	7
3.2.	Constru	uction Progress	7
4.	WEAT	HER CONDITIONS	7
5 .	SURFA	ACE WATER MONITORING PROGRAM	8
5.1.		e Surface Water Quality Monitoring	
5.2.	Event E	Based Monitoring	9
6.	GROU	NDWATER MONITORING PROGRAM	10
6.1.	Ground	dwater Quality	10
6.2.	Ground	dwater Levels	11
6.3.		dwater Inflows	
7.		DS	
7.1.	Lobs H	lole	
	7.1.1.		12
	7.1.2.		
7.2.	Tantan	ngara	
	7.2.1.		
		Groundwater	
7.3.			
7.4.		Forest	
8.		LUSION	
		A – BACKGROUND CONDITIONS	
APP	ENDIX B	3 - EPL results	23
TAI	BLE O	OF TABLES	
Table	e 2-1: Mo	onitoring overview	6
		ey construction activities for 01 September to 30 November 2024	
		eather conditions for 01 September to 30 November 2024	
Table	e 5-1: De	esign rainfall depths (SWMP Section 5.1.1)	9
T-1-1	- 0 4. \\	atan assas Basinas	4.4

ABBREVIATIONS AND DEFINITIONS

Acronym	Definition	
AWS	Automatic weather stations	
BoM	Bureau of Meteorology	
CoA	Condition of Approval	
ECVT	Emergency Cable and Ventilation Tunnel	
EPL	Environmental Protection Licence	
FGJV	Future Generation Joint Venture	
MAT	Main Access Tunnel	
MDB	Murray Darling Basin	
NEM	National Electricity Market	
SHL	Snowy Hydro Limited	
Snowy Scheme	Snowy Mountains Hydro-electric Scheme	
SWMP	Surface Water Management Plan	
TARP	Trigger Action Response Plan	
ТВМ	Tunnel Boring Machine	
WMP	Water Management Plan	
WQO	Water Quality Objectives	

1. INTRODUCTION

Snowy Hydro Limited (SHL) is constructing a pumped hydro-electric expansion of the Snowy Mountains Hydro-electric Scheme (Snowy Scheme), called Snowy 2.0. Snowy 2.0 will be built by the delivery of two projects: Exploratory Works and Snowy 2.0 Main Works (which is ongoing).

Snowy 2.0 is a pumped hydro-electric project that will link the existing Tantangara and Talbingo reservoirs through a series of new underground tunnels and a hydro-electric power station. Most of the project's facilities will be built underground, with approximately 27 kilometres of concrete-lined tunnels constructed to link the two reservoirs and a further 20 kilometres of tunnels required to support the facility. Intake and outlet structures will be built at both Tantangara and Talbingo Reservoirs.

Snowy 2.0 will increase the generation capacity of the Snowy Scheme by an additional 2,200 MW, and at full capacity will provide approximately 350,000 MWh of large-scale energy storage to the National Electricity Market (NEM). This will be enough to ensure the stability and reliability of the NEM, even during prolonged periods of adverse weather conditions.

WeBuild, Clough and Lane have formed the Future Generation Joint Venture (FGJV) and have been engaged to deliver both Stage 2 of Exploratory Works and Snowy 2.0 Main Works.

2. PURPOSE

This Environmental Water Report has been prepared to satisfy the reporting requirements in the Main Works – Water Management Plan (WMP) and to meet Infrastructure Approval CSSI 9687 (CoA) Schedule 3, Condition 31(c)(d) which requires publicly available reporting of the outcomes of the WMP. The Environmental Water Report is intended to provide commentary on the performance of the monitoring programs as part of the WMP (identified in Table 2-1).

A report detailing the management of the SHL controlled groundwater network is to be provided separately by SHL.

Table 2-1: Monitoring Overview

Aspect	Objective				
Surface Water Monitoring Program					
Routine receiving surface water quality monitoring	Inform and assess the performance of management processes/measures that seek to minimise the Project's impact on surface water quality.				
Event based wet weather overtopping water quality monitoring	 Help determine source and extent of any water quality changes. Collect baseline data to characterise water quality and determine site specific values. 				
Groundwater Monitoring Program					
Groundwater quality monitoring	Inform and assess the performance of management. • Processes/measures that seek to minimise the Project's impact on				
Water extraction monitoring	 Processes/fleasures that seek to fillinitise the Project's impact of regional and local (including alluvial) aquifers and GDEs. Inform and assess water usages, site water balance and compliance with water access licences. 				

3. OVERVIEW

3.1. Reporting Period

This Environmental Water Report covers the monitoring period from 1 December 2024 through to 28 February 2025.

3.2. Construction Progress

Table 3-1 summarises the key construction activities which have been undertaken during the reporting period of 1 December 2024 to 28 February 2025.

Table 3-1: Key Construction Activities

Location	Key Construction Activities
Lobs Hole Ravine Bay	 Spoil placement ongoing from Intake and D&B tunnel. Piped connection between leachate basin and treatment plant continuing to transfer water.
Lobs Hole	ACCOMMODATION CAMPS
	 Exploratory Camp Accommodation – Fabrication of all 6 buildings completed 4 out of 6 buildings installed.
	 MAIN YARD LH Main Office Expansion - Building installation and internal fit-out ongoing. Utilities installation and upgrades ongoing. Main yard surface temporary works ongoing.
	 TBM 1 advancing up the alignment. Grouting in LST and other testing works ongoing.
	GF01Temporary placement storage management ongoing.
	TALBINGO
	 BH05 steel casing installation completed. Stage 2 excavation is ongoing.
Marica	 USS excavation works ongoing. Marica Adit Portal clearing and grubbing works throughout the footprint. Temporary placement works occurring throughout the site.
Rock Forest	NA – site under operational use as laydown area.
Tantangara	 In HRT, TBM 3 has installed 139.0 rings during the period. STP processing for muck coming from TBM3 ongoing.

4. WEATHER CONDITIONS

There are several weather stations along the alignment of the project that report real-time data. These include:

- "Lobs Hole" which is an Automatic Weather Station managed by FGJV in Lobs Hole construction site.
- "Cabramurra" an Automatic Weather Station located near the lookout in the Cabramurra township managed by the Bureau of Meteorology

 "Tantangara" - an Automatic Weather Station managed by FGJV in Tantangara construction site.

The Tantangara and Cabramurra gauges are in sub-alpine environments, with elevations of approximately 1220 m and 1475 m, respectively. Cabramurra records substantially higher annual rainfall amount than the lower-elevation gauges at Lobs Hole and Tantangara. Tantangara and Lobs Hole weather stations record actual onsite conditions at the respective construction sites, while Cabramurra weather station, at 1470 m is representative of conditions at Marica – which has an elevation of 1480 m and is approximately 15 km north of the Cabramurra Station.

A summary of climate data for the ravine and plateau areas is provided in Table 4.1

Table 4-1: Weather Conditions Within the Reporting Period

Parameter	Lobs Hole ¹		Marica (Cabramurra)			Tantangara ²			
	Dec	Jan	Feb	Dec	Jan	Feb	Dec	Jan	Feb
Temperature	Temperature								
Mean maximum	33.4	33.9	34.7	26	27.1	28.3	29.9	29.8	32.5
Mean minimum	6.6	7.6	3.9	1.4	4.4	-1.4	3.5	4.2	-1
Rainfall	Rainfall								
Monthly	112.4	37.6	145	91.6	58.8	2.0	76	96.4	102.8
Long Term Average	94.13	105.67	78.8	76.3	146.3	36.47	127.2	135.87	47.4

^{1.} Lobs Hole long term average rainfall is taken from the Tumbarumba weather station.

This quarter, climatic conditions typical of the summer months in the Snowy Mountains were noted, primarily including high temperatures, isolated storms through to large scale thunderstorms. Lobs Hole, Marica and Tantangara reached maximum mean temperatures of 34.7°C, 28.3°C and 32.5°C respectively with Lobs Hole reporting the highest temperatures of each site across the reporting period.

In December, Lobs Hole and Marica received higher than average rainfall while Tantangara experienced below average. Tantangara recorded higher than average rainfall during February with volumes more than doubling the long-term average.

SURFACE WATER MONITORING PROGRAM

5.1. Routine Surface Water Quality Monitoring

Routine surface water quality monitoring is undertaken in accordance with CoA Condition 31 and Environmental Protection Licence 21266 (EPL - 21266) to determine if project activities may be promoting negative impacts to receiving water quality against the Water Quality Objectives (WQO). The NATA accredited laboratory analytical results have been included in Appendix B.

Publicly available surface water quality monitoring results undertaken in accordance with EPL - 21266 can be accessed here.

During this reporting period, fluctuations of basic physio-chemical water quality indicators were observed on numerous occasions across surface water receptors. Typically, fluctuations were influenced by rainfall events, waterbody depth and streamflow velocities during the reporting period.

^{2.} Tantangara long term average rainfall is taken from the Adaminaby Alpine Tourist Park weather station.

Basin monitoring locations were typically influenced by rainfall events, depths to water levels and changes to the catchment characteristics, such as increasing placed spoil volumes that report to a basin.

Consistent algal blooms were observed across Talbingo and Tantangara reservoirs throughout the reporting period. The algal presence is consistent with historic observations made by the Project during the warmer months. The warmer ambient temperatures, reduction in reservoir water volumes (due to construction or potentially SHL BAU operations) and flow reductions are key contributors to these occurrences. The algal presence is reflected in the nutrient concentrations, elevated water temperatures and other such physio-chemical indicators within the water bodies.

Increases to reported thermotolerant coliform units are potentially related to the ability for some coliform strains within the subgroup to grow in the environment (not necessarily related to faecal matter) and for the large numbers of animal matter (bird and horse faecal matter or decomposition) to contribute to water sample volumes. This circumstance may arise when collecting samples from shorelines or stream banks containing animal faecal matter (bird and horse faecal matter), have animals present within the waterbody or in a state of decomposition. These circumstances may influence the reported nutrient concentrations due to the decomposition of plant and animal matter, warmer temperatures and potential flow reductions and may contribute to some of the broader nutrient fluctuations reported during the period.

Minor nutrient fluctuations within EPL31 (up gradient), EPL34 (up gradient), EPL35 and EPL36 are reflective of the aforementioned settings as they occupy smaller water bodies which are subject to seasonal flow influences and heavy animal occupation daily, yet report similar nutrient concentrations across the reporting period, irrespective of the gradient or catchment area.

Alternatively, in locations without similar volumes of animal traffic and seasonal flow influences such as EPL12 and EPL16, the reported total nitrogen concentrations appeared comparably similar, with the above gradient location EPL12 reporting (at times) greater concentrations of total nitrogen compared to the down gradient EPL16.

5.2. Event Based Monitoring

Event based wet weather overtopping water quality monitoring is undertaken in accordance with the SWMP Trigger Action Response Plan (TARP 2) to monitor stormwater overtopping sediment basin discharges. Sediment basins for the Project have been designed to meet, at a minimum, the 85th percentile 5-day rainfall volume (mm). The respective volumes are listed below in Table 5-1.

Table 5-1: Design Rainfall Depths (SWMP Section 5.1.1)

Catchment	Description	85 th percentile, 5-day rainfall (mm)	90 th percentile, 5-day rainfall (mm)	95 th percentile, 5-day rainfall (mm)
Yarrangobilly River	Surface works at Lobs Hole and Marica	28.1	35.6	49.0
Upper Eucumbene River	Surface works between Marica and the Snowy Mountain Highway	35.2	43.4	56.9
Tantangara construction compound	Surface works adjacent to the southern portion of Tantangara Reservoir	30.5	37.0	51.0
Goorudee Rivulet	Surface works at Rock Forest	20.0	25.7	36.1

During the reporting period, occurrences of rainfall exceeding site design capacities of the 85th percentile 5 – day rainfall depths are listed below:

- 6 December 2024 Lobs Hole EPL106 overtopped following a total of 153 mm of rainfall since 27 November 2024.
- 7 December 2024 Lobs Hole Pad 2 overtopped following 160 mm of rainfall since 27 November 2024.
- 7 December 2024 Lobs Hole GF01 Basin overtopping 160 mm of rainfall since 27 November 2024.
- 7 December 8 December 2024 Marica MC03 and MC02 respectively overtopped following 71 mm of rainfall since 2 December 2024.
- 10 February 2025 Lobs Hole F3a, F5a, F8.5 and F9 overtopped following 51 mm of rainfall since 5 February 2025.
- 10 February 2025 Marica MC01, MC02 and MC03 overtopped following 75 mm of rainfall in 24 hours.
- 11 February 2025 Tantangara CH300 and Batch Plant overtopped following 57.7 mm of rainfall since 6 February 2025.
- 11 February 2025 Lobs Hole F8.5, MYLS and 10.5 overtopped following 89.9 mm of rainfall since 5 February 2025.
- 14 February 2025 Lobs Hole F1 and F3b overtopped following 135 mm of rainfall since 5 February 2025.
- 14 February 2025 Marica EPL101 overtopped following 78 mm of rainfall in the 10 hours previous.

Following the design exceedances across all Project sites, basic physio-chemical and comprehensive analytical results reported pH, turbidity, electrical conductivity, and dissolved oxygen (DO) levels frequently surpass the established water quality objectives. In response to these conditions, water samples were collected for analysis and the EPA was notified of the releases in accordance with R4.1 of EPL 21266.

GROUNDWATER MONITORING PROGRAM

6.1. Groundwater Quality

The Project groundwater network was monitored regularly throughout the reporting period. Fluctuations in EC, turbidity and DO% was most pronounced in bores within proximity to placement activities. Increased sediment load in groundwater bores resulted in the commencement of a bore maintenance program, commencing at Tantangara. Total and dissolved metals were observed in bores with increased sediment loads. These locations typically reflected sediment influenced water physiochemical characteristics. Increasing nutrient concentrations were reported in numerous groundwater locations adjacent placement areas.

Groundwater extraction and bore maintenance works were undertaken at target locations throughout the reporting period. The objective of these works was mitigating any potential risk to receptors where possible.

6.2. Groundwater Levels

Groundwater level monitoring is undertaken in accordance with the Groundwater monitoring program to determine groundwater drawdown as a result from the Project.

6.3. Groundwater Inflows

Groundwater inflow into the tunnels is monitored during construction. This data is required to monitor the volume of extracted groundwater against water access licence limits (Table 6-1).

Table 6-1: Water Access Licence

Water Access Licence	Project	Water Source	Share (ML)
WAL42407 – Specific Purpose Access Licence	Exploratory Works	Upper Tumut water source	227
WAL42408 – Groundwater Licence	Exploratory Works	Lachlan Fold Belt MDB	0
WAL42960 – Groundwater Licence	Exploratory Works	Lachlan Fold Belt MDB	354
RO13-19-093 – via Controlled Allocation	Main Works	Lachlan Fold Belt MDB	3,375
RO1-19-092 – via Controlled Allocation	Main Works	Lachlan Fold Belt South Coast	1,722
Specific Purpose Access Licence	Main Works	Tantangara Water Source	532

7. TRENDS

Due to the narrow reporting period, the significant variation in monitoring events across all locations and the inclusion of different monitoring purposes, the following trend analysis focuses on broader observations across project sites within the reporting period.

7.1. Lobs Hole

Lobs Hole surface water locations were observed to respond to the significant rainfall volumes occurring in the later stages of the reporting period with an observable upwards trends reported for hardness and heavy metal concentrations such as total and dissolved arsenic, total and dissolved chromium hexavalent, total and dissolved copper and iron. Nutrients such as nitrate, nitrite and total nitrogen appeared to trend slightly down during however were noted to spike upwards at the conclusion of the reporting period. Total phosphorous was observed trending upwards.

Groundwater locations across Lobs Hole reported relatively stabilised analytical trends throughout the reporting period with possible downward trends observably influenced by rainfall events across the site. This is evident when viewing trending responses to the rainfall events across the sites during January and February. Of note, total aluminium saw a reduction in analytical trends during the middle of the reporting period before spiking during rainfall and returning to a slight reduction. Arsenic (both total and dissolved) saw consistent fluctuations within individual locations with an overall slight decrease noted. Total and dissolved copper trends largely decreased during the reporting period before commencing a slight upwards trend during the later portion of the period. Nitrate concentrations saw a large decrease before an overall lift towards the latter half.

7.1.1. Surface Water

S2-FGJV-ENV-REP-0127 Rev. B – June 2025 Page 15 of 49

7.1.2. Groundwater

7.2 Tantangara

Overall, the various Tantangara surface water locations appeared stable across the reporting period. Those analytes with observable nitiated a decreasing trend across the site before possibly pivoting slightly upwards towards the later portions of the period. Ammonia was observed to report a slight increase in overall trends throughout the period. Dissolved manganese saw an overall reduction in analytical trends until events in January initiated a possible upwards trend. Nitrate concentrations saw slight increases overall, with a arger change occurring during the rainfall periods. Reactive Phosphorous was observed to increase slightly with a consistent elevation rending results were influenced by rainfall during January which may have caused slight elevation during this point. Dissolved aluminium during January.

nitrogen and total phosphorous. The groundwater locations were observed to report greater variation within analytical concentrations Groundwater monitoring locations were observed to be largely consistent with the previous reporting period until January whereby heavy ainfall volumes saw a slight to notable increasing trajectory for ammonia, total arsenic, trivalent chromium, filtered hardness total Kjeldahl eported during each monitoring round. This typically was observed to be triggered during or following January.

7.2.1. Surface Water

Once printed this document becomes uncontrolled

% € ¬/6ш

7.3. Marica

Marica surface monitoring locations remained stabled throughout the reporting period. Exceptions given to the leachate basin locations reporting greater differences between monitoring events, which is thought to be influenced by increasing blasting volumes resulting in larger nutrient concentrations, separating these structures from other such surface water locations.

Overall groundwater analytical trends were characterised by analytical correlation between individual monitoring locations and external weather events such as heavy rainfall events across the sits. The reporting period primarily reflects consistent fluctuations between individual monitoring events however no overt analytical trend was understood. The monitoring locations were consistent with other sites in regard to rainfall response, with analytical spikes occurring across the site during these events.

7.4. Rock Forest

No trends were identified.

8. CONCLUSION

During this quarter, construction activities were undertaken to enhance the leachate detection in the basin system. These included the installation of plastic lining to prevent water leakage and infiltration into the groundwater, which potentially contributed to a decrease in downstream nutrient concentrations in the groundwater wells. As previously mentioned throughout this report, climate variations and their impacts on water quality were observed across all surface water monitoring locations, including sediment and leachate basins.

A small number of surface water monitoring locations are understood to reflect ephemeral characteristics including irregular stream flows (typically resulting from rainfall events or incidents across Projects), period of dry or no water and those locations immediately down gradient of surface water migration locations. The reliance on external events for water and flow rates resulted in occasional monitoring locations reported as dry or without representative water quantity for sampling.

High water temperatures have contributed to the increased algal growth and green discolouration of the Talbingo and Tantangara Reservoirs consistent with historical observations made by the Project. The algal presence was typically accompanied by increases to nutrients and occasional thermotolerant coliform accompaniment. Lower reservoir water levels, increased intensity of the rainfall events and the higher temperatures separating such events further promotes the consistent growth of algal blooms.

Increases in select nutrient analytes were observed across the numerous water receptors was typically reported in locations within immediate proximity to spoil emplacement areas, received overland water flow stemming from emplacement areas or roadway runoff. The exceptions to the aforementioned observations include leachate basin concentrations and those locations comprised by smaller streams with abundant animal and plant matter within the body.

To better understand these results, a consideration of reporting periods from previous years was interwoven into the assessments for this reporting period. The concentration were largely consistent with historical ranges, excluding locations recently constructed and leachate basins.

APPENDIX A - BACKGROUND CONDITIONS

SURFACE WATER

	PLATEAU	RAVINE
Major watercourses1 (Dry weather)	• pH generally ranges between 6.2 and 8.5, with occasional lower and upper bound exceedances.	• pH ranges between 6.2 to 8.5, with occasional lower and upper bound exceedances.
	Carbonate and salinity vary seasonally, with higher levels occurring in summer/autumn than winter/spring.	 Low concentrations of suspended solids and low turbidity. Carbonate and salinity vary
	Low concentrations of suspended solids and low turbidity. Total nitrogen and phosphorus concentrations	seasonally, with higher levels occurring in summer/autumn than winter/spring.
	exceeded WQO values occasionally.	Total nitrogen and phosphorus concentrations exceeded WQO values occasionally.
	Aluminium concentrations exceeded the WQO value on a frequent basis. Some exceedances were more than 4 x WQO values.	Aluminium concentrations in the Yarrangobilly River exceeded WQO values frequently in winter/spring and occasionally in summer/autumn. Some
	Copper, iron, lead and zinc concentrations exceeded WQO	exceedances were more than 4 x WQO values.
	values on an occasional basis. Other metals are generally below WQO values	Copper, chromium and zinc concentrations exceeded WQO values occasionally. Other metals
Minor watercourses (near	The water quality during wet weather conditions is poorly understood. It is expected that concentrations of suspended sediment, nutrients, and some metals would be higher than dry weather concentrations. The water quality of minor	The understanding of water quality during wet weather conditions is informed by data from monitoring undertaken in March and May 2019 following moderate rainfall. Available data indicates that receiving water quality during wet weather conditions is generally poorer relative to dry weather conditions with higher turbidity, lower pH, higher nutrients and metals such as copper and zinc. The median (from five samples) copper concentration was 6 x the WQO value. The water quality of minor
minor watercourses (near proposed surface infrastructure	water quality of minor watercourses near the Tantangara construction compound is generally poorer than major watercourses, with total phosphorus, total nitrogen	watercourses in Lobs Hole is generally poorer than major watercourses, with turbidity, total phosphorus, copper and zinc exceeding WQO values on a

	and aluminium all exceeding WQO values on a frequent basis. Turbidity, copper and iron exceeded WQO values on an occasional basis.	frequent basis. Total nitrogen, arsenic and aluminium exceeded WQO values on an occasional basis.
Runoff from existing disturbed areas	No sampling from existing disturbed areas has been undertaken at plateau.	Runoff samples were collected from existing disturbed areas in Lobs Hole such as access tracks and remnant copper mining areas in May and March 2019. Disturbed area runoff is characterised as being mildly acidic, having very high suspended sediment and turbidity levels, high total nitrogen and total phosphorous, and very high aluminium and copper concentrations. During wet weather conditions (when runoff is occurring to local watercourses in Lobs Hole), the water quality in the Yarrangobilly River is expected to be degraded as it passes through Lobs Hole.

Notes: 1. Major watercourses in plateau refer to the Murrumbidgee and Eucumbene rivers, Tantangara, Gooandra, Nungar and Kellys Plain creeks. Major watercourses in ravine refers to the Yarrangobilly River and Wallaces Creek.

- 2. General note: exceedances are described in the WCR as:
- frequent if the WQO value was exceeded in 20% or more of samples; and
- occasional if the WQO value was exceeded in at least one sample, but in less than 20% of samples.

RESERVOIR

TALBINGO

Water quality characteristics are described as follows:

- pH ranges between 6.3 and 8.2, with occasional lower and upper bound exceedances.
- Low concentrations of suspended solids and low turbidity.
- Carbonate and salinity vary seasonally, with higher levels occurring in summer/autumn, co rrelating with the higher salinity of streamflow over summer and autumn months.
- Oxidised nitrogen concentrations exceeded WQO values frequently in winter/spring a
 nd occasionally in summer/autumn. This is the opposite trend to the Yarrangobilly River,
 were exceedances are more likely to occur in summer/autumn.
- Ammonia concentrations frequently exceed WQO values during winter/spring, corelating with the elevated oxidised nitrogen.
- Total phosphorus concentrations exceed WQO values in all summer/autumn samples and in approximately 25% of winter/spring samples.
- All dissolved metal concentrations were below WQO values except for:
- *Copper and zinc concentrations exceeded WQO values frequently in summer/autum n and occasionally in winter/spring; and
- *Chromium (total) and lead concentrations occasionally exceeded WQO values in summe r/autumn.

It is noted that all but one of the copper and zinc exceedances occurred during March 2018 sampling, where 80% of samples exceeded the WQO values. Different analysis methods (consistent with the methods applied more broadly to EIS sampling) were applied to subsequent sampling (post-March 2018).

Reservoir water quality during and following wet weather conditions is poorly understood. There is potential for turbidity, nutrients and some metals to fluctuate within watercourse inflow locations for several weeks following a substantial runoff event.

TANTANGARA

Water quality characteristics are described as follows:

- pH ranges between 6.6 and 8.0, with one lower and upper bound exceedance occurring.
- Low levels of suspended solids and low turbidity.
- Carbonate and salinity vary seasonally, with higher levels occurring in summer/autumn.
- Oxidised nitrogen and ammonia occasionally exceeded WQO values in summer/autumn.
- Total phosphorus frequently exceeded WQO values in summer/autumn and winter/spring while reactive phosphorus occasionally exceeded WQO values.
- All dissolved metal concentrations were below WQO values except for:
- * aluminium concentrations exceeded WQO values on a frequent babasis;
- *copper, iron and zinc exceeded WQO values on a frequent basis during summer/autumn;
 and
- *chromium (total), cobalt and lead exceeded WQO values on an occasional basis during summer/autumn.

It is noted that all of the copper exceedances and the zinc exceedances occurred during March 2018 sampling, where 100% of samples exceeded the WQO values. Different analysis methods (consistent withthe methods applied more broadly to EIS sampling) were applied to subsequent sampling (post-March 2018).

Reservoir water quality during and following wet weather conditions is poorly understood.
 There is potential for elevated turbidity, nutrients, and some metals to occur near watercourse inflow locations for several weeks following a substantial runoff event.

APPENDIX B - EPL RESULTS

2024 EPI 21266 in Situ Water Quality Measurements
EPI Monthly Monitoring December 2024
Table 1. Surface Water Quality Date
River and Minor Westercures

			of .	90-110		30-350	3	6.5-8.0	,	2-25		
Date and Time	EPL Site ID	Location Description	Temp (°C) DC	id (%) od	DO (mg/L)	EC (µS/cm)	TDS (mg/L)	pH R.	Redox (mV)	Turbidity (NTU)	Field Comments	Context
2/12/2024, 12:48 pm	EPLS	Yarrangobilly River, upstream of the exploratory tunnel and construction pad	21.21	140.3	12.45	09	gg.	7.86	ĸ	87	Clear skies, rain in recent days	This location is upstream of works and is therefore representative of background conditions.
2/12/2024, 1-15 pm	EP16	Wallaces Creek, upgream of Yarrangobilly River and Wallaces Creek confluence	21.42	150.0	13.25	83	×	7.84	121	2.62	Clear skies, rain in recent days: turbidity very low	This location is consistent with background conditions for December 2024.
2/12/2024, 2:48 pm	EPLS	Yarrangobiliy River, downstream of Lick Hole Gully	4 87.22	148.2	12.76	22	9	8.02	119	3.5	Clear sunny day, rain in recent days	Elevated DO is consistent with the background conditions for December 2024, and elevated pH within the historical ranges.
2/12/2024, 3:24 pm	ยหา	Yarrangobilly River, downstream of the accommodation camp and upstream of Talbingo Reservoir	22.99	134.6	2.11	71	97	7.84	131	6.0	Otear skies, rain in recent days	Elevated DO is consistent with the background conditions for December 2024.
2/12/2024, 1:02 pm	EPL12	Yarrangobilly River, immediately downstream of portal pad	21.04	131.7	11.72	59	38	7.82	105	8.33	Clear skies, rain in recent days	Elevated DO is consistent with the background conditions for December 2024.
2/12/2024, 1-35 pm	EPL14	Yarrangobilly River, downstream of road construction areas	21.35	123.1	10.9	62	41	7.78	123	7.44	Clear skies, rain in recent days, turb very low	Elevated DO is consistent with the background conditions for December 2024.
2/12/2024, 1-52 pm	EPL15	Yarrangobilly River, downstream of road construction areas	21.74	140.3	12.33	62	41	37.7	128	7.3	Clear skies, rain in recent days. Turb very low	Elevated DO is consistent with the background conditions for December 2024.
2/12/2024, 3:46 pm	EPL16	Yarrangobilly River, downstream of road construction areas	23.04	125.6	10.76	7.1	97	27.7	139	9 , 6	Chear skines, rain in recent days	Elevated DO is consistent with the background conditions for December 2024.
11/12/2024, 8:47 am	EP124	Yarrangobilly River tributary (Watercourse 2), directly downstream of road	16.6	55.2	5.37	253	165	7.24	95	422	Clear sunny day.	Low DO and elevated turbidity could be attributed to the 73.8mm Lobs Hole received over the last days.
6/12/2024, 9:15 am	EPL26	Eucumbene River downstream of Marica Road	13.59	109.3	11.37	38	25	7.33	1112	2.45	Clear water, no odour, high flowing, rain event overninght, a bit turbulent water	All readings are within WQO limits.
6/12/2024, 9:25 am	EPL27	Eucumbene River upstream of Marica Road	12.22	146.0	15.66	33	22	7.22	117	111	Clear water, no odour, high flowing, rain event overninght, a bit turbulent water	This location is upstream of works and is therefore representative of background conditions.
7/12/2024, 11:01 am	EPL30	Kellys Plain Creek, downstream of accommodation camp and laydown areas	17.34	104.4	10.02	65	32	7.39	120	27.3	100 mm rain so far in the week	Elevated turbidity could be attributed to the 73.5mm received over the last few days.
7/12/2024, 10:47 am	EP131	Kellys Plain Creek, upstream of accommodation camp and laydown areas	17.75	100.6	72.6	30	20	737	122	83	Gloud and rain, heavy rain, iver 100mm last few days	All readings are within WQO limits.
7/12/2024, 10:26 am	EPL33	Murrumbidgee River, downstream of Tantangara reservoir outlet.	20.04	106.8	17.6	26	17	7.61	125	#8	Gloud and rain, heavy rain, iver 100mm last few days	Low EC aligns with historical data for December 2024.
7/12/2024, 9:42 am	EPL34	Mungar Creek, upstream of Tantangara Road	18.4	95.7	8.98	36	23	171	18	17.0	Gloud and rain, heavy rain, iver 100mm last few days.	This location is upstream of works and is therefore representative of background conditions.
7/12/2024, 9-59 am	EPL35	Nungar Creek, downstream of Tantangara Road	18.06	68.9	8.4	n	ä	7.19	Ħ	197	Cloud and rain, heavy rain, iver 100mm last few days	Low EC is consistent with badground conditions. Low DO is being monitored to ensure variance is attributed to natural fluctuations.
22/12/2024, 11-51 am	EPL36	Camerons Creek, upstream of works in Rock Forest	20.16	65.9	5.97	49	25	7.25	199	38.8	Clear sunny day, Water is wery stagnant. Recent construction in paddock nearby. Water is dear, no odour, slightly dark brown.	This location is upstream of works and is therefore representative of background conditions.
22/12/2024, 11:17 am	EPL37	Camerons Oreek, downstream of works in Rock Forest	22.7	87.3	7.53	19	8	7.45	219	27.6	Clear sumry day. Water is very low flow. Brown non turbid. No odour. Recent works started nearby at RF.	Low DO and elevated turbidity are consistent with background conditions for this location in December 2024.
16/12/2024, 9:47 am	EPL52	GF01 kachate basin	24.71	1.811	9.78	0/11	746	7.09	141	124	Sunny day, clear water, no odour, algae growing in the basin	High DO and EC are due to runoff accumulating in the sediment basin. Water was taken for treatment at the process water treatment plant or re-use where parameters were met.
18	EP153	GF01 surface water upstream east	æ			#3		//8		181		Dry site, no flow
*	EP154	GF01 surface water upstream west	38	W	9	88		8		c		Dry site, no flow
16/12/2024, 10:06 am	EPLSS	GFOI surface water downstream	20.67	63.0	5.63	1230	786	6.87	148	4.30	Sunny day, clear water, no odour, considerable flow	Low DO and high EC can be attributed to recent rain events causing increased runoff in the area.
7/12/2024, 12:31 pm	EPL67	Nungar Creek surface water downstream west from Tantangara emplacement area	20.67	108.4	9.72	33	13	7.44	131	166	Good and rain, heavy rain, over 100mm last few days.	Low EC is within the historical range and is consistent with background conditions for this location for December 2024.
6/12/2024, 10:49 am	EPL71	Surface water downstream of Marica emplacement	18.92	124.8	11.59	96	29	7.46	153	92.4	Rainy day, no odour, turbid water, no flowing	Elevated turbidity could be attributed to the 56.2mm received over the last days
10/12/2024, 12:22 pm	EPL84	F8 Basin	24.99	63.0	5.2	257	357	17.8	101	1000	Clear, sunny day. Turb is greater than 1000mtu	High pH, EC, and turbidity due to runoff accumulating in the sediment basin. Water was taken for treatment at the process water treatment plant or re-use where parameters where met.
10/12/2024, 1:55 pm	EPLIS	MYQ7 Basin	26.04	1333	9.95	675	433	9.14	43	1000	No odour, turbid, not suitable for reuse	High DO, EC, phl, and turbidity are due to runoff accumulating in the sediment basin. Water was taken for treatment at the process water treatment plant or re-use where parameters where met.
10/12/2024, 12:29 pm	EP136	LHG01 Bazin	24.66	87.3	7.23	1140	287	II	Ħ	108	Chear, surray day.	High DO, EC, pH, and turbidity are due to runoff accumulating in the rediment basin. Water was taken for treatment at the process water treatment plant or re-use where parameters where met.

S2-FGJV-ENV-REP-0127 Rev. B – June 2025 Page 24 of 49

EPL Monthly Monitoring December 2024 Table 2 - Reservoir Water Quality Data	ng December 20,	PL Monthly Monitoring December 2024 able 2. Reservoir Water Quality Data				Water Quality	Water Quality Objectives (see note 2)	ote 21				
Talbingo and Tantangara Reservoirs	Reservoirs		Temp (°C)	DO (%) 90 - 110	DO (mg/t)	EC (µ5/cm) 20 - 30	TDS (mg/L)	pH 65-80	Redox (mV)	Turbidity (NTU) 1-20		
Date and Time	EPL Site ID	Location Description	Temo (°C)	1%) 00	DO (me/L)	EC (us/cm)	TDS (mg/U)	Но	Redox (mV)	Turbidity (NTU)	Field Comments	Context
4/12/2024, 9:35 am	EPL10	Tabingo Reservoir, downstrean		11011	9.3	82	67	7.84	120	0	dear day, heavy rain yesterday, multiple rain events recently. Turbidity incorrect	Elevated DO and EC are consistent with background conditions in the Yarrangobilly River for December 2024, low turbidity aligns with the Establishment.
4/12/2024, 9:19 am	EP111	Tabingo Rezervoir, downstream of outlet	23.69	115.7	89	27.	49	7.83	115	9:0	clear day, heavy rain yesterday, multiple rain events recently. Turbidity reading much lower than expected, likely incorrect.	Invarion at suggest Elevated O and EC are consistent with background conditions in the Yarrangobilly River for December 2024, low turbidity aligns with the historical ranges.
31/12/2024, 3:02 pm	EPL28	Taxtangara Reservoir, upstream of works in the mouth of the Murrumbidgee River	25.6	107.2	8.76	35.3	23	7.62	128.7	5.9	Clear summy day with minimal wind. Shallow depth with vegetation growth present. No visible Elenated EC is consistent with background conditions in the states no redoor. Campers present in the direct vicinity of the sampling point. Varianteebility River for December 2024.	Elevated EC is consistent with background conditions in the Varrangobilly River for December 2024.
29/12/2024, 11-58 am	EP129	Tastangara Reservoir, downstream of works area and upstream of lower Marsumbidgee River	20.69	62.4	5.6	24	16	7.92	141	191	Otear sunny day. No boat available. Sample taken from edge. Windy increasing, turb increased as edge of lake	
29/12/2024, 11-41 am	EP132	Taxtangara Reservoir, Tantangara Intake. Downstream of construction works	21.49	58.5	4.99	53	19	7.89	35	12.6	Otear sunny day. No boat available. Sample taken from edge. Windy edge of lake increasing turb.	Low DO remains with the historical data.
28/12/2024, 10:52 am	EP138	Tastangara Reservoir, variable location dependant on tide and reservoir levels. Between the emplacement area and the ancillary facilities for emplacement activities.	18.98	63.6	5.9	24	16	6.28	245	2.0	Sunny day.	Low DO and pH align with the historical data for this location in December 2024.
28/12/2024, 9:40 am	EP139	Combience of Nungar Creek and Tantangara Rezervoir, variable location dependent ontide and reservoir levels. Upstream of Tantangara construction works	16.24	919	909	26	41	6.03	248	2.6	·hep huns	Low DO and pH align with the historical data for this location in December 2024.
21/12/2024, 11:59 am	EPL40	Confluence of the upper Murrumbidgee River and Tantangara Reservoir, variable location dependent on tide and reservoir levels. Upstream of works	20.3	96.4	17.8	26.1	19	7.63	176.1	4.26	Sumry clear day with minimal wind. Algae and aquasic plant life present. Visible sediment. No oddour or sheen. Reservoir level 13%, only accessible via ahore.	All readings are within WQO limits.
29/12/2024, 11:01 am	EPL46	Taxtangara Reservoir, diffuser outlet discharging into Taxtangara Reservoir from Taxtangara STR/PWTP	20.56	9709	5.44	29	3	7.86	251	3.6	Chear sunny day, No boat available. Sample taken from edge.	Elevated ED and low DO levels, likely resulting from decreased water levels and increased organic matter, were observed. These locations will be closely monitored during the next sampling round.
29/12/2024, 11:09 am	EPL 51	Taxtangara Reservoir, downstream of Tantangara STP/PWTP diffluer outlet	20.7	55.1	16.54	53	19	7.40	181	3.8	Clear sunny day, No bost available. Sample taken from edge.	Low DO levels, likely resulting from decreased water levels and increased organic matter, were observed for December 2024.
Takle 3. Treated Mater Ovelity Date	Jan Shar Date	16				Water Orollin	Water Guality Objectives (see note 3)	12 -41				į.
Talbingo	The state of the s		Temp (°C)	(%) OG	DO (mg/L)	EC (µS/cm)	TDS (mg/t)	Hd	Redox (mV)	Turbidity (NTU)		
					CHINE TOWN	700	S 200	65-80		25		
Date and Time	EPL Site ID	Location Description	Temp (°C)	(%) OG	DO (mg/L)	EC (µS/cm)	TDS (mg/L)	Hd	Redox (mV)	Turbidity (NTU)	Field Comments	Context
1/12/2024, 9-37 am	EPL41	Loss Hole STP/PVATP Final Effluent Quality Monitoring Point. Downstream of final treatment, prior to discharge to Talbingo Reservoir.	28.1	64.3	5.03	18	12	737	183	101	NTU: reading error. Water crystal clear, samples warm - water run through beluga	No water was being dicharged at the time of sampling.
T. C. C. T. C.						10.00						
Isble 4 - Irested Water Quality Data Tantongara	Justify Data		Temp (°C)	(%) OO	DO (mg/l)	EC (µ5/cm)	C (µS/cm) TDS (mg/L) 5200	pH 65-80	Redox (mV)	Turbidity (NTU)		
Date and Time	EPL Site ID	Location Description	Temp (°C)	(%) OO	DO (mg/L)	EC (µS/cm)	TDS (mg/L)	Ha	Redox (mV)	Turbidity (NTU)	Field Comments	Context
11/12/2024, 2:04 pm	EP150	Tartangara STP/PWTP Final Effluent Quality Monitoring Point. Downstream of final treatment, prior to discharge to Tantangara Reservoir.		91.6	8.32	79.3	25	8.4	212.1	2.75	No adour or discolouration. RO unit had been running for approx 2 hours prior to retrieving sample.	pH readings will be closely monitored, however no water was being discharged at the time of sampling.
		THE PROPERTY OF THE PROPERTY O							- 01			AND THE RESIDENCE AND ADDRESS OF THE PERSON

S2-FGJV-ENV-REP-0127 Rev. B – June 2025 Page 25 of 49

2024 EPL 21266 In Situ Water Quality Measurements EPL Monthly Monitoring December 2024

Table 5 - Groundwater Quality Data GF01 Surface Water and Groundwater

						020 00					Т	
						NC-320		0.5-6.0				
Date and Time	EPL Site ID	Location Description	Temp (°C)	(%) OO	(1/Sm) OG	EC (µS/cm)	TDS (mg/l)	Hd	Redox (mV)	Turbidity (NTU)	Field Comments	Context
9/12/2024, 10:49 am	EPL56	GF01 groundwater upstream east	15.55	28.8	2.87	238	155	71.7	z	20.6	SWL-10.56m, sunny day, turbid water, no odour	All readings are within WQO limits.
9/12/2024, 11:03 am	EP157	GF01 groundwater upstream west	15.98	14.6	1.45	247	160	7.81	z	53.6	SWL-13.54 m, sunny day, turbid water, no odour	All readings are within WQO limits.
9/12/2024, 11:52 am	EPLSS	GF01 groundwater downstream	16.05	17.6	1.73	8778	295	207	118	158	SML-6.26 m, sunny day, turbid water, no odour	Elevated EC is generally consistent with historical range for this location. Low pff will be monitored however borehole pump extraction method is in the process of being upgraded.
21/12/2024, 10:57 am	EPLES	Tantangara groundwater downstream West	15.06	67.9	25.9	18	27	5.24	567	15	WL3.86m (top of casing), Clear sumry day, Pump almost set up for extraction. Water is clear, no odour.	low pH and EC are generally consistent with previous results in the last months. These conditions are following expected changes due to altered climatic conditions.
21/12/2024, 10:42 am	EPL69	Tantangara groundwater downstream East	16.68	3	8.17	32	п	295	67.2	52	WL 238m (top of caing). Otear sunny day. Ongoing ground disturbance nearby due to PSE. Water is non surbid, no odour.	low pH is generally consistent with the historical data. These conditions are following expected changes due to altered climatic conditions.
21/12/2024, 9:04 am	EPL70	Tantangara groundwater upstream	16.97	583	5.63	108	70	6.53	236	67.9	WL-6.07m (top of casing). Clear, sunny morning. No recent rain events. Water is clear, non turbid, no ociour.	This location is upstream of works and is therefore representative of up gradient conditions.
13/12/2024, 10:59 am	EPL72	Marica groundwater upstream	15.83	34.7	3.44	118	11	5.48	211	164	SWL-35.25 m, sunny day, surbid water, no odour	This location is upstream of works and is therefore representative of up gradient conditions.
13/12/2024, 11:48 am	EPL73	Marica groundwater downstream	5.22	107.5	10.77	324	111	6.04	242	242	SWL-13.23 m, sunny day, turbid water, no odour	This location is consistent with the up gradient conditions.
25/12/2024, 8:20 am	EPLSO	LHG groundwater upstream	18.71	21.2	1.97	842	539	6.47	60	76.2	SWL-20.34m (top of casing), Clear sunny morning. Water is slightly turbid, no odour.	This location is upstream of works and is therefore representative of up gradient conditions.
25/12/2024, 9:19 am	EPLS1	LHG groundwater downstream	17.85	10.3	26.0	847	542	6.82	-58	583	WL. 3.69m (top of casing). Clear sunny day. Water is very clear with sediment settling at the bottom, no odour. High turbidity due to bottom of the sleeve.	-
25/12/2024, 8:34 am	EPLS2	MY groundwater upstream	17.96	71.6	6.73	2720	1740	6.5	φ	73.7	WIL 9.31m (top of casing), Clear sunny morning. Water is very clear, no odour. Very high EC reading, usually this spot has high EC	This location is upstream of works and is therefore representative of up gradient conditions.
25/12/2024; 10:05 am	EPLS3	MY groundwater downstream	18.73	10.8	101	581	372	629	69	201	WL 3.97m (top of casing). Clear sunny day, Recent works neaby with an excayator creating bunds. Weers is slightly turbid, no odour	Low pH and high EC align with the historical ranges and some fluctuations in pH levels due to the climatic conditions have been changed.
25/12/2024, 8:49 am	EPL87	MY groundwater downstream	17.68	17.3	1.65	663	424	626	129	1000	WL.4.01m (top of caing). Clear sunny moming, Water is very brown turbid. Same colour as basin adjacent. Dirt like odour. NTU has surpassed 1000.	Low pH levels align with historical data. However, some fluctuations in pH levels have been observed due to changing climatic conditions.
25/12/2024, 9:47 am	EPLSS	MY groundwater downstream	18.07	13.5	1.27	818	523	7.01	-141	2.4	WL3 22m (top of casing). Clear aumy day, Some ground disturbance nearby with an excavator building bunds. Water is clear with a very strong sulphur smell	Elevated EC aligns with the up gradient conditions for December 2024.
25/12/2024, 8:00 am	EPLS9	LHG groundwater downstream	15.96	20.5	2.02	374	243	6.61	154	254	WIL 3.13m (top of casing). Clear sunny morning. Water is clear with sediment settling at the bottom. No odour, Plently of animal scat surrounding bore.	Elevated EC aligns with the up gradient conditions for December 2024.
9/12/2024, 10:38 am	06 Td3	GF01 groundwater downstream	15.8	63.6	6.3	06	88	623	72	239	SWL-12.35 m, sunny day, turbid water, no odour	Low pH is consistent with up gradient ranges for this location in December 2024.
9/12/2024, 10:28 am	EPL 91	GF01 groundwater downstream	16.46	20.7	2.02	305	199	6.89	43	57.7	SWL-7.74 cm; sunny day, turbid water, no odour	All readings are within WQO limits.
9/12/2024, 11:17 am	EPL 92	GF01 groundwater downstream	15.62	80.5	10.8	136	88	9.9	111	244	SWI- 12.25 m, sunny day, turbid water, no odour	All readings are within WQO limits.
9/12/2024, 11:23 am	EPL 93	GF01 groundwater downstream	15.43	15.8	1.58	251	163	7.12	-57	133	SWI- 15.36 m, sunny day, turbid water, no odour	All readings are within WQO limits.
9/12/2024, 11:27 am	EPL 94	GF01 groundwater downstream	15.45	18.1	1.81	173	113	6.89	-72	76.9	SWL-12.21 m, sunny day, turbid water, no odour	All readings are within WQO limits.
9/12/2024, 11:44 am	EP1.95	GFO1 groundwater downstream	16.05	151	1.49	309	389	709	105	6. 99	SWI-6.58 m, sunny day, turbid water, no odour	Low pH and elevated EC are consistent with up gradient ranges for this location in December 2024.
9/12/2024, 11:37 am	EPL 96	GF01 groundwater downstream	15.74	52.5	5.19	1500	656	7.51	13	787	SWL-4.57 m, sunny day, turbid water, no odour	Elevated EC is consistent with the up gradient ranges for this location in December 2024.
9/12/2024, 11:59 am	EPL 97	GF01 groundwater downstream	16.03	19	1.87	478	311	6.41	109	18.8	SWL-6.4 m, sunny day, turbid water, no odour	Low pH and elevated EC are consistent with the up gradient ranges for this location in December 2024.

values for physical and chemical stressors in south-east Australia (upland rivers) that are reported in Tables 3.3.2 and 3.3.3 of ANZECC(ARMCANZ (2000)) Note 1: Water Quality Objective values for the Varrangobilly River and Minor Watercourses refer to the default trigger

Note 2: Water Quality Objective values for Talbingo Ress

Note 3. Water Quality Objective values Treated Water reference the predicted values for physical and chemical stressors from the treatment plant as presented in the Main Works Els.

Note 4; Water Quality Objective values for groundwater reference the default trigger values for physical and chemical stressors in south-east Australia (upland rivers) for pH and electrical cor

20,00

20.03

1041

10.00

EPU92

18.83

FP. 10

smus

10/01

TOTAL .

ma

DIES.

CPUED

97.43

1010

22743

000

COTIGO

2010

15743

100

Snowy Hydro 2.0 Main Works Monthly EPL Sampling: 01-31 Dec 2024 Groundwater

Armipto	Cree	Link of Reporting	Water Quality Objective Value*	
Physiochemical		CO.	2.0	9/12/26
T.	pH Unit	*	953	7.17
Electrical Constactivity	ms/cm		30-330	238
Oxidation Reduction Potential	Am.	8	No Water Quality Objective Value	22
Temperature	3,	35	No Water Quality Objective Value	15.55
Dissolved Oxygen	N saturation	3	No Water Quality Objective Value	20.3
Turbidity	NTU		No Water Quality Objective Value	20.5
aboratory analytes		9	The second of th	3
II.	1/014	**	No Water Quility Objective Value	8
Hardress as CACO3	Mg/L		No Water Quality Objective Value	125
lutrients				
Ammeda se N	1/31	01	11	925
NOTE IN + Mitnate as N (NOx)	1/36	100	11	430
Ejeldahl Nitrogen Total	HE/1	300	No Water Quality Objective Value	<100
Nitrogen (Total)	HEAL	300	220	4100
Seactive Phosphorus	MC/L	O	12	**
Phosphorus (Total)	1/56	90	30	30
nocheio		TE TE		
Cyanide Total	1/36			100
hydrocarbone				
Olland Grams	mg/t.			410
Versit	1000	68	Samuel Company of the	1
Aluminium (total)	H6/1		No Water Quality Objective Value	1,030
Aluminium (dissolved)	1/54	**	27	9
Amenic (total)	1/3H	0.2	No Water Quality Objective Value	6.0
Arsenic (dissolved)	1/36	0.2	0.1	-0.2
Chromian (NeVt) (total)	HE/L	0.2	No Water Quality Objective Value	25
Oromism (III-VI) (dissolved)	1/34	0.2	10.0	403
Capper (total)	Pag/L	0.5	No Water Quality Objective Value	808
Capper (datalwed)	PEA.	0.5	1	6.5
Fron (botal)	1/36		No Water Quality Objective Value	1.500
from (dissolved)	1/26		300	ā
Lead (total)	Mg/L	0.1	No Water Quality Objective Value	2.0
Last (dissolved)	HE/L	0.1	7.3	401
Manganese [tatal]	1/24	2.0	No Water Quality Objective Value	37.2
Manganese (dimolved)	HOL	5.0	1,200	12.4
Nickel (total)	1/34	50	No Water Quality Objective Value	4.0
Nickel (dissolved)	Pag/L	0.5		202
Sher hotall	HEAL	100	No Water Quality Objective Value	10.00
Silver (dissolved)	1/24	10.0	500	10.05
Zinc (total)	1/24	+	No Water Quality Objective Value	10

Wher Cushy Objective extual for groundwater refer to the default trigger values for physical and chemical stresson in south-west Australia (spined re

the protection of 1974 of equatic species ANZECE, ARMONG (2000), they are not pollut. Sample not required at this location.

Snowy Hydro 2.0 Main Works Monthly EPL Sampling: 01 - 31 Dec 2024 - Talbingo and Tantangara Reservo

PH Unit PH Unit PH Unit PH Unit PH Unit PK PK PK PK PK PK PK P	Analyte	Unit	Limit of Reporting	Water Quality Objective Value*	3	
PH Unit PH PE PH	Field				4/12/24	ব
tion fortential my	Нd	pH Unit		6.5-8	7.84	
ition Potential mV	Electrical Conductivity	µ5/cm	Ð.	20-30	75	
No No No No	Oxidation Reduction Potential	ΛW	10	No Water Quality Objective Value	120	3 0
solides mg/L 5 or (filtered) mg/L 5 or (filtered) mg/L 10 mg/L 2 d mg/L 0.2 d mg/L 0.2 d mg/L 0.3	Temperature	ာ့		No Water Quality Objective Value	23.78	88
Solids mg/L 5 O (filtered) mg/L 1 I 10 I 10	Dissolved Oxygen	% saturation	1	90-110	110.1	307
oolids mg/L 5 O ₁ (filtered) mg/L 1 Mg/L 10 Mg/L 10 Mg/L 10 Mg/L 100 mg/L 100 mg/L 100 mg/L 10 mg/L 10 mg/L 0.2 d) mg/L 0.2 d) mg/L 0.2 d) mg/L 0.2 d) mg/L 0.5 gen bemand mg/L 1 gen bemand mg/L 1 gen bemand mg/L 2	Turbidity	UTN	E C	1-20	0	20
Page	Laboratory analytes					
ses as cacO ₂ (filtered) mg/L 1 noia as N µg/L 10 noia as N µg/L 10 + Mitzle as N (NOx) µg/L 100 in Witzgen Total µg/L 100 horus (Total) µg/L 1 horus (Total) µg/L 1 horus (Total) µg/L 1 horus (Total) µg/L 3 horizon (Gissobed) µg/L 5 minn (Gissobed) µg/L 5 iwim (Hirvyl) (Gissobed) µg/L 0.5 iwin (Hirvyl) (Gissobed) µg/L 0.5 iwin (Gissobed) µg/L 0.5 (Gissobed) µg/L 0.5 (Gissobed) µg/L 0.5 (Gissobed) µg/L 0.5 pg/L 0.5 pg/L 0.5 rich (Gissobed) µg/L 0.5 pg/L 0.5 pg/L 0.5 rich (Gissobed) µg/L 0.5 pg/L 0	Total suspended solids	mg/L	5	No Water Quality Objective Value	10	<u>.</u>
High Hg/L 10 Hg/L 10 Hg/L 10 Hg/L 10 Hg/L 10 Hg/L 10 Hg/L 100 Hg/L 100 Hg/L 100 Hg/L 100 Hg/L 100 Hg/L 100 Hg/L 10 Hg/L 0.2 Hg/L 0.3 Hg/L 0.5	Hardness as CaCO ₃ (filtered)	mg/L	1	No Water Quality Objective Value	33	0.00
nois as N Hg/L 10 In Mittage at N (Mox) Hg/L 100 In Mittage rotal Hg/L 100 ne (Total) Hg/L 100 ne Phosphorus Hg/L 1 ne Phosphorus Hg/L 1 ne Protal Hg/L 4 de Total Hg/L 3 de Total Hg/L 3 de Total Hg/L 0.2 inium (dissolved) Hg/L 0.2 inium (dissolved) Hg/L 0.5 dissolved) Hg/L 0.5 dissolved) Hg/L 0.5 dissolved Hg/L 0.5 dissolved Hg/L 0.5 fissolved Hg/L 1 fissolved Hg/L 1 fissolved Hg/L 1 mixi-losygen Demand mg/L 2	Nutrients	3000	200		ess	
National State National Na	Ammonia as N	1/8nl	10	10	<10	- 35
In Mitrogen Total Mg/L 100	Nitrite + Nitrate as N (NOx)	Hg/L	10	10	58	- 6
High High 100 10	Kjeldahl Nitrogen Total	Hg/L	100	No Water Quality Objective Value	200	
ve Plosphorus Hg/L 1 horus (Total) Hg/L 4 le Total Hg/L 4 oors mg/L 5 of Grease mg/L 5 inium (dissolved) Hg/L 5 inium (dissolved) Hg/L 5 inium (dissolved) Hg/L 5 inium (dissolved) Hg/L 0.2 dissolved) Hg/L 2 dissolved) Hg/L 0.5 dissolved) Hg/L 0.5 dissolved) Hg/L 0.01 ligolved Hg/L 0.01 lisolved Hg/L 0.01 dissolved Hg/L 0.1 lisolved Hg/L 0.1 lisolved Hg/L 3 mixal Oxygen Demand mg/L 2	Nitrogen (Total)	µg/L	100	350	300	
Incompaniest Inco	Reactive Phosphorus	Hg/L	1	5	2	
He total Hg/L 4 4 Hg/L 1 1 Grease mg/L 1 Inim (dissolved) Hg/L 0.2 Inim (dissolved) Hg/L 0.2 Inim (dissolved) Hg/L 0.2 Inim (litt-VI) (dissolved) Hg/L 0.5 Inim (dissolved) Hg/L 0.5	Phosphorus (Total)	Hg/L	10	10	<10	2 -
Interchain Int	Inorganics					-
oots mg/L 1 d Grease mg/L 5 nium (dissolved) µg/L 5 iv (dissolved) µg/L 0.2 r (dissolved) µg/L 2 r (dissolved) µg/L 2 dissolved) µg/L 2 dissolved) µg/L 0.3 dissolved) µg/L 0.5 dissolved) µg/L 0.01 lig/L 0.01 lg/L 0.01 lissolved) µg/L 0.01 lissolved) µg/L 0.01 lissolved) µg/L 0.01 mixal Oxygen Demand mg/L 2	Cyanide Total	Hg/L	4	7	<4	
Interest	Hydrocarbons				0	
inim (dissolved) µg/L 5 r (dissolved) µg/L 0.2 inim (ini-vi) (dissolved) µg/L 0.2 r (dissolved) µg/L 0.5 figored 1g/L 0.5 dissolved) µg/L 0.5 nese (dissolved) µg/L 0.5 (dissolved) µg/L 0.5 (dissolved) µg/L 0.0 Issolved) µg/L 0.1 incolored µg/L 0.1 mixed longen Demand mg/L 2	Oil and Grease	mg/L	1	5	<1.0	,
nium (dissolved) µg/L 5 r (dissolved) µg/L 0.2 nium (lit-vI) (dissolved) µg/L 0.2 nich (lit-vI) (dissolved) µg/L 0.5 fissolved) µg/L 2 dissolved) µg/L 0.5 nnese (dissolved) µg/L 0.5 (dissolved) µg/L 0.5 (dissolved) µg/L 0.5 (dissolved) µg/L 0.5 (dissolved) µg/L 0.01 mg/L 1 1 mg/L 2 ng/L mg/L 2 ng/L	Metals					000
k (dissolved) Hg/L 0.2 iwm (int-vf) (dissolved) Hg/L 0.2 cff(ssolved) Hg/L 0.3 fissolved) Hg/L 2 dissolved) Hg/L 0.3 neze (dissolved) Hg/L 0.5 dissolved) Hg/L 0.5 dissolved) Hg/L 0.1 fissolved) Hg/L 0.1 fissolved) Hg/L 1 mixed loxygen Demand mg/L 2	Aluminium (dissolved)	1/8H	5	55	15	15
	Arsenic (dissolved)	1/8H	0.2	13	0.5	20
Intercolved	Chromium (III+VI) (dissolved)	Hg/L	0.2	1	<0.2	
Isisohed	Copper (dissolved)	Hg/L	0.5	14	<0.5	- 35
dissolved) µg/L 0.1 nnese (dissolved) µg/L 0.5 (dissolved) µg/L 0.5 (dissolved) µg/L 0.01 listolved) µg/L 1 Issolved) µg/L 1 mixed Oxygen Demand mg/L 2	Iron (dissolved)	Hg/L	2	300	48	
Insert (discolved) Hg/L 0.5	Lead (dissolved)	µg/L	0.1	3.4	<0.1	_6
(disolved) Hg/L 0.5	Manganese (dissolved)	Hg/L	0.5	1,900	1.7	
(dissolved) µg/L 0.01	Nickel (dissolved)	Hg/L	0.5	11	<0.5	
Issolved	Silver (dissolved)	Hg/L	0.01	0.05	<0.01	110
Coliforms CFU/100ml. 1 mg/L 2	Zinc (dissolved)	Hg/L	1	60	7	
CFU/100mL 1 mg/L 2	Biological					
mg/L 2	Faecal Coliforms	CFU/100mL	1	10/100^	1500**	
	Biochemical Oxygen Demand	mg/L	2	1/5^	2	

4/12/24 4/12/24 11/12/24 29/12/24 <	voir	EPL10	EPL11	EPL28	EPL29	EPL32	EPL38	EPL39	EPL40	EPL46	EPL51
783 762 792 789 6.28 6.09 763 786 786 75 353 34 29 24 26 261 621		4/12/24	4/12/24	31/12/24	29/12/24	29/12/24	28/12/24	28/12/24	21/12/24	29/12/24	29/12/24
115 1227 141 144 245 248 1761 164 164 125 1267 141 144 245 1248 1761 164 164 1263	_	7.84	7.83	7.62	7.92	7.89	6.28	6.03	7.63	7.86	7.4
115 1287 1281 1564 245 248 1764 1564 1644 1644 126	_	75	75	35.3	24	29	24	26	26.1	62	53
115.7 140.2 120.6 124.4 149.6 162.4 20.5 2	_	120	115	128.7	141	164	245	248	176.1	164	181
115.7 107.2 62.4 36.5 61.6 61.6 96.4 60.6 9.6 0.6 5.9 19.1 12.6 7 9.4 4.26 8.4 0.8 0.5 19.1 12.6 7 9.4 4.26 8.4 0.8 0.5 20 21 0.5 0.5 0.5 0.5 0.8 0.2 0.2 0.2 0.5 0.5 0.5 0.5 0.8 0.2 0.2 0.2 0.5 0.5 0.5 0.5 0.8 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.8 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.8 0.3 0.3 0.3 0.3 0.3 0.3 0.8 0.3 0.3 0.3 0.3 0.3 0.3 0.8 0.3 0.3 0.3 0.3 0.3 0.3 0.8 0.3 0.3 0.3 0.3 0.3 0.3 0.8 0.3 0.3 0.3 0.3 0.3 0.3 0.8 0.3 0.3 0.3 0.3 0.3 0.3 0.8 0.3 0.3 0.3 0.3 0.3 0.3 0.8 0.3 0.3 0.3 0.3 0.3 0.3 0.8 0.3 0.3 0.3 0.3 0.3 0.3 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	_	23.78	23.69	25.6	20.69	21.49	18.98	16.24	20.3	20.56	20.7
8 19 12 15 94 426 84 84 8 3 20 20 20 25 65 <td>_</td> <td>110.1</td> <td>115.7</td> <td>107.2</td> <td>62.4</td> <td>5.95</td> <td>63.6</td> <td>61.6</td> <td>96.4</td> <td>9.09</td> <td>55.1</td>	_	110.1	115.7	107.2	62.4	5.95	63.6	61.6	96.4	9.09	55.1
13 5 20 21 65 65 65 65 65 65 210 210 210 210 22 5 7 9 9 2 210 210 210 210 200 200 200 200 200 210 210 210 250 250 250 250 250 250 210 210 210 250 250 250 250 250 250 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 211 211 211 211 211 210 210 211 211 211 211 211 210 210 211 211 211 211 211 210 210 211 211 211 211 211 210 211 211 211 211 211 211 210 210 211 211 211 211 210 210 211 211 211 211 210 211 211 211 211 211 210 211 211 211 211 211 210 211 211 211 211 211 210 211 211 211 211 211 210 211 211 211 211 211 210 211 211 211 211 210 211 211 211 211 210 211 211 211 211 210 211 211 211 211 210 211 211 211 211 210 211 211 211 211 210 211 211 211 211 210 211 211 211 211 210 211 211 211 211 211 210 211 211 211 211 211 210 211 211 211 211 211 210 211 211 211 211 211 210 211 211 211 211 211 210 211 211 211 211 211 210 211 211 211 211 211 210 211 211 211 211 211 210 211 211 211 211 211 211 210 211 211 211 211 211 211 210 211 211 211 211 211 211 210 211 211 211 211 211 211 210 210 211 211 211 211 211 210 210 210 211 211 211 211 210 210 210 210 211 211 211 210 210 210 211 211 211 211 210 210 210 210 210 210 210 210 210 210		0	9.0	5.9	19.1	12.6	7	9.4	4.26	8.4	3.8
53 5 2 2 5 5 7 9 7 9 7 7 9 7 7 9 7 7		10	60	<>	20	21	<>	8	\$	60	\$
1200 120		33	33	10	2	2	20	7	6	2	2
1,00 1,00	_	1000									
57 C10 4 6 C2 50 9 C2 200 200 600 600 200 200 900 900 300 500 500 400 200 200 300 300 4 3 2 2 3 2 3 3 8 44 3 2 2 3 4 3 2 3 8 44 45 3 4	_	<10	<10	<10	<10	20	10	<10	<10	<10	<10
1200 300 500 500 400 200 200 300		58	25	<10	4	9	42	20	6	<2	2
1500 1500 1500 1500 1500 1200 1200 1300 1300 14 4 5 5 5 5 5 5 5 5	_	200	200	300	200	200	400	200	200	300	300
4 3 2 3 3 2 3 3 3 3 4 3 4		300	300	300	200	200	400	200	200	300	300
440 450 350 350 450 350 150 20 441 452 442 443 443 443 443 443 444 444 415 415 415 415 415 415 415 415 415 415 402 402 402 402 402 402 402 402 402 402 403 404 403		2	4	3	2	2	3	2	3	8	4
C4 C4 C4 C4 C4 C4 C4 C4		<10	<10	40	20	30	40	30	10	20	20
C10 C10	_										
15 10 110		77	4	<4	7	4	3	4	44	4	4
15 32 44 45 40 19 19 18 42 0.4 0.3 0.3 0.3 0.3 0.42 0.02 0.6 0.2 0.2 0.2 0.2 0.2 0.2 0.6 0.2 0.2 0.2 0.2 0.2 0.2 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.7 0.6 0.6 0.8 0.6		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0
1,2 2,4 4,4 6,5 4,4 6,5 4,4 6,5 6,4	_						4	•	ç	;	9
0,0,4 0,0,3 0,0,3 0,0,3 0,0,3 0,0,3 0,0,3 0,0,3 0,0,4 0,0,2 <th< td=""><td>_</td><td>2 .0</td><td>3 3</td><td>25</td><td>1 :</td><td>3 6</td><td>7 0</td><td></td><td>07</td><td>7</td><td>9 6</td></th<>	_	2 .0	3 3	25	1 :	3 6	7 0		07	7	9 6
49 62 40 62<		000	500	603	603	603	600	200	203	500	603
49 186 242 253 271 90 55 257 (01) (01) (01) (01) (01) (01) (01) (01)		\$ 00>	50>	<0>	<0.5	<0.5	<0.5	505	<0.5	<0.5	<0.5
c01 c01 <td>_</td> <td>48</td> <td>49</td> <td>166</td> <td>242</td> <td>251</td> <td>774</td> <td>9</td> <td>E</td> <td>252</td> <td>256</td>	_	48	49	166	242	251	774	9	E	252	256
12 8.8 11.9 5.6 35.6 31.1 3.2 9.7 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.01 40.01 40.01 40.01 40.01 40.01 40.01 41 41 41 41 41 41 41	_	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(0.5) (0.5) <th< td=""><td>_</td><td>1.7</td><td>1.2</td><td>8.8</td><td>11.9</td><td>5.6</td><td>35.6</td><td>3.1</td><td>3.2</td><td>5.6</td><td>14.4</td></th<>	_	1.7	1.2	8.8	11.9	5.6	35.6	3.1	3.2	5.6	14.4
Q01 Q01	_	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Q Q Q Q Q Q Q Q Q Q		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
1200** 10		<1	41	<1	<1><1	<1	<1	15	<1	<1	1>
1200** 10										8 :	8 8
2 2	_	1500**	1200**	10		388	*	×	369	4	2
	_	2	0	2	Ü	10	1	X1	10	240	7

^{*} Water Quality Objective values for Tablingo and Tantangara Reservoir refer to the default trigger values for physical and chemical stressors in south-east Australia (fresh lakes and reservoirs) for the protection of 95% of aquatic species ANZECC / ARMCANZ (2000), they are not pollutant limits.
** Algable blooms can present as fease of informs
** Algable blooms can present as fease of informs
** Sample not required at this location.

		Cnc	Spound Hydro 2 O Main Works																										
MG	onthly EPL San	pling: 01 - 3	Monthly EPL Sampling: 01 - 31 Dec 2024 - Surface Water			- 8	-	- 20	-			- 00	-							-				20					
Analyte	Unit	Limit of Reporting	Water Quality Objective Value*	S .	9143		2	EP112	PIL4	PLIS PLIS	16 EP124	800	EP127		ä	EN3	EP 34	S	9	666	E PES		7	SS	L COLOR	EP01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Si	9
Field				2/12/24	2/12/24	2/12/24	2/12/24	2/22/26 2/	2/12/24 2/13	2/12/24 2/12/24	12/22/24	24 6/12/24	4 6/12/24	7/12/24	7/12/24	7/12/24	7/12/24	7/12/24 2	22/22/26 23	22/22/22	16/12/24	huo	Dry	16/12/24	7/122/24	6/12/24	10/12/24	10/12/24 1	10/12/24
Hđ.	15		9-5-9	7.86	7.84	2.02	7.84	7.82	7.78 7.	7.76 7.72	2 7.24	7.33	7.22	7.39	737	7.61	7.71	7.15	7.23	7.43	2.09	ha	λu	6.87	7.44	7,46	8.71	9.14	8.11
Electrical Conductivity	m2/cm	-	30-320	73	121	119	131	105	123 13	128 139	96 6	112	117	49	30	3.6	36	22	49	61	1170	bry	ha	1230	23	96	222	673	1140
Oxidation Reduction Potential	Am.		No Water Quality Objective Value	22	121	199	131	103	123 13	139	96 6		117	120	122	125	19	113	199	219	141	Dry	bry	148	131	133	101	43	113
Temperature	٥,		No Water Quality Objective Value	21.21	27.42	22.78	22.9	21.04 2	21.35 21.	21.74 23.04	16.6	13.59	12.22	17.34	17.75	20.04	18.4	18.06	20.16	22.7	24.71	λug	λıα	20.67	20.67	18.92	24.59	26.04	24.66
Dissolved Oxygen	% saturation	,	90-110	140.3	130	148.2	134.6	131.7	_	0.3 125.6			~	104.4	100.6	106.8	55.7	88.9	62.9	93	118.1	ha	ha	63	108.4	124.8	63	123.3	87.3
Turbidity	NTU		2:23	9.18	2.02	8.13	8.19	8.33	7.04 7.	7.23 9.39	9 42.2	2.46	181	27.3	65	8.4	17	16.7	38.8	27.6	12.4	ha	bry	4.2	16.6	92.4	1000	1000	109
Laboratory analytes	300			20		20	707	500	700	- 23		75	- 25	- 3	0	3	35	977	3	3	0	977	3	97	3	100	3	3	
TSS	mg/L		No Water Quality Objective Value	61	6	22	10	12	11	14 12	0	0	0	20	11	0	9	16	0	60	60	ha	λug	0	11	18	860	888	52
Hardness as cacds	WB/L		No water quanty objective value	77	38	23	#	58	-	-	-	4	a	9	n	•	,		22	22	343	ρί	λū	380	-	33	94	4	297
Nutrients								ŀ	ŀ	ŀ	ŀ	ŀ					-		-	ł	-	-				İ	ŀ	ŀ	T
Ammonia as N	H6/1	10	13	<10	979	970	900	970	+	<10 <10	+	10	410	400	c10	20	30	410	410	70	900	λu	bry	<10	970	410	10	30	10
Nitrite + Nitrate as N (NOx)	1/2e	10	a	7	4	90	20	+	+	+	-	4	+		12	ž	99	970	+		29,900	ργ	λuq	64,200	QD CTO		+	+	19,000
Kjeldahl Nitrogen Total	Hg/L	100	No Water Quality Objective Value	200	000	100	200	+			+	-	-	2	300	200	300	400		-	4,000	Dry	λū	6,300	200	100	-	+	1,300
Nitrogen (Total)	HE/L	100	230	200	C100	100	200	300	100	100 200	9,200	001>	4100	200	300	200	300	400		1,500	33,900	Dry	Dry	70,300	200	100			20,300
Reactive Phosphorus	1/8H	,	s s	n		•	•	*	+	+	+	+	m	9	9	7	P	p	10	60	7	Ory	hud	m		3	21	9	•
Phosphorus (Total)	Hg/L	10	20	20	20	10	40	30	30 1	10 30	20	30	20	30	20	30	40	40	20	30	40	Dry	hu	<10	40	90	260	730	9
Inorganica		Ī						ŀ	-	ŀ	ŀ	ŀ	ŀ																
Cyanide Total	1/84	4	4	10	49	90	4	90	04	40	90	40	8	90	95	<4	49	40	4	90	16	Dry	Dry	13	90	90	*	90	4
Hydrocarbons	33						8	1	ŀ	ŀ		ł	1	1				8	1	3				8		3	3	1	T
Oil and Grease	mg/L	-	n	47.0	4.0	47.0	41.0	4.0	4.0	CL0 CL0	CLD CLD	4.0	979	47.0	c1.0	4.0	4.0	4.0	d.0	47.0	410	Dry	ha	4.0	47.0	47.0	0.0	979	d.0
Metals												9	Ž()				3			3	-	1	ľ				ŀ	ŀ	T
Aluminium (total)	He/L	•	No Water Quality Objective Value	×	,	e.				7	*		o.		Si.	e		9	36		879	Dry	hud	34	304	1,410	34,400	33,100	1,340
Aluminium (dissolved)	He/L		27	20	7	38	47	29	62 6	67 60	60	60	01	46	40	300	41	- 42	22	40	10	Dry	bry	0	37	12	16	9	0
Arsenic (total)	He/L	0.2	No Water Quality Objective Value	,	,			,		1	1		•						i.	,	3.6	Δu	Dry	0.3	0.2	1.0	18.4	26.5	3.7
Arsenic (dissolved)	Hg/L	0.2	0.8	50	0.3	0.3	0.3	0.3	0.3	0.3 0.3	3 0.7	40.2	40.2	40.2	40.2	0.2	0.3	0.3	5.0	0.3	5.2	Dry	Dry	0.3	0.2	6.0	9.8	17.0	77
Chromium (III+VI) (total)	Hg/L	0.2	No Water Quality Objective Value				1	-	+		20	4	+				1				11.6	Va	Aug	0.7	0.4	2.6	123	132	6.9
Chromium (III+VI) (dissolved)	1/94	0.2	0.01	0.3	40.2	0.3	0.3	6.9	0.2	0.3	0.8	40.2	00.2	40.2	40.2	2.00	0.2	0.2	40.2	2.00	6.5	hu	λia	0.7	20.5	40.2	0.0	26.8	9.1
Copper (total)	1/84	6.0	No Water Quality Objective Value		. :		. ;			+		+	+								1 :	À .	À ,	60.3	0.0	2.4	63.0	17	00
iron (totali	ne/t		No Water Quality Objective Value				3	╀	ŀ		H										977	nu Dun	200	28	202	1 800		14 000	1 980
Iron (dissolved)	ME/L	24	300	06	2	29	7.7	06	83	87 82	120	23	23	88	80	140	201	204	330	348	42	Dry	NO.	2	172	H		2	
Lead (total)	Hg/L	0.1	No Water Quality Objective Value	,	,	81	0	,		H	H	H	-					10	3		1.0	huo	bry	40.1	0.2	6.0	104	506	3.1
Lead (dissolved)	HE/1	0.1		1.05	<0.1	40.1	<0.1	40.1	c0.1 <0	<0.1 00.1	1 40.1	40.1	40.1	40.1	<0.1	40.1	-0.1	40.1	40.1	1.00	<0.1	ha	hud	40.1	40.1	40.1	<0.1	:0:	1.00
Manganese (total)	Hg/L	0.3	No Water Quality Objective Value	33	,						2				G	٠	0		3		22.0	bry	bry	6.8	8.6	36.8	1,430	1,300	133
Manganese (dissolved)	Hg/L	6.0	1,200	2.7	3.9	3.1	4.4	2.4	2.8 2.	2.9 3.9	37.8	2.5	1.7	5.9	3.6	25.7	4.3	4.6	53.6	14.2	<0.5	Dry	bry	4.8	4.4	32.1	9.0	6.0	85.3
Nickel (total)	Hg/L	0.5	No Water Quality Objective Value	•			100		-	-		í	•							í	3.3	Dry	hud	1.2	111	6.2	134	146	3.4
Nickel (dissolved)	New Year	0.3	60	60.5	60.5	0.3	603	0.5	c0.5 c0	<0.3 <0.3	5 40.3	500	40.5	40.5	5.00	40.5	0.5	6.0	40.5	9.0	<0.3	Dry	Dry	0.8	40.5	13	0.5	0.3	1.2
Silver (total)	He/L	0.01	No Water Quality Objective Value		•			,	4		4	4	4	+			•	-			<0.01	hu	Duy	<0.03	-0.03	10.00	0.10	60.0	10.00
Silver (dissolved)	HE/L	10.0	0.02	10.05	10.05	<0.01	40.01	*0.01	:0.01	10.02 10.02	10.00	10.01	<0.01	<0.01	<0.01	40.01	10.03	40.01	10.05	10.05	40.01	Ory	hug	40.01	40.02	10.00	<0.01	c0.01	10.01
Zinc (total)	1/84	-	No Water Quality Objective Value	y.		*		+	+	+	+	+				2			*		95	ριν	Aug	80	2	4	264	224	60
Zinc (dissolved)	нул		2.4	U	ď	V	U	U	0	0	U	ď	U	v	U	ď	U	U	U	U	U	ò	Δú	7	U	U	U	U	U

* Water Quality Objective values for surface water refer to the default trigger values for physical and chemical stressors in south-east Australia (upland rivers) for the

protection of 99% of equatic species ANZECC / ARMCANZ (2018), they are not pollutant limits imposed by EPL 21266.

Monthly EPL Sampling: 01 - 31 Dec 2024 - Treated Water

Analyte	Unit	Limit of Reporting	Water Quality Objective Value*	
Flow Rate				1/12/20
Inflow	ML/day	300		
Outflow	ML/day	0	4.32 (EPL 43 / 50)	10
Field				
Н	pH Unit	0	6.5-8.5	7.37
Electrical Conductivity	ms/cm	9	700 (EPL 41) / 200 (EPL 50)	18
Oxidation Reduction Potential	Vm	•	No Water Quality Objective Value	183
Temperature	၁့		15	28.1
Dissolved Oxygen	% saturation	·	No Water Quality Objective Value	64.3
Turbidity	UTN	830	Q5	101
Laboratory analytes				
Total suspended solids	mg/L	in	5/10	8.00
Hardness as CaCO ₃ (filtered)	mg/L	1	No Water Quality Objective Value	₹
Nutrients				
Ammonia as N	1/8M	10	200/2000^	140
Kjeldahl Nitrogen Total	1/3rl	100	No Water Quality Objective Value	200
Nitrogen (Total)	1/3H	100	v-/05E	200
Reactive Phosphorus	Hg/L	1	No Water Quality Objective Value	<1
Phosphorus (Total)	Hg/L	10	100/300A	20
Inorganics				
Cyanide Total	Hg/L	4	No Water Quality Objective Value	<4
Hydrocarbons				
Oil and Grease	mg/L	н	2/5^	410
Metals				
Aluminium (dissolved)	1/3ri	in	55	\$
Arsenic (dissolved)	HE/L	0.2	13	<0.2
Chromium (III+VI) (dissolved)	HE/L	0.2	1	<0.2
Copper (dissolved)	1/8H	0.5	14	<0.5
Iron (dissolved)	Hg/L	2	300	0
Lead (dissolved)	Hg/L	0.1	3.4	<0.1
Manganese (dissolved)	Hg/L	0.5	1,900	0.8
Nickel (dissolved)	Hg/L	0.5	11	40.5
Silver (dissolved)	1/3H	0.01	0.05	<0.01
Zinc (dissolved)	Hg/L	1	8	4
Biological				
Faecal Coliforms	CFU/100mL	1	10/100^	<1
Biological Oxygen Demand	I/am	2		60

EPL44 EPL45 EPL47 EPL48	0.0000 0.0000	20000	60	* * * * * * * * * * * * * * * * * * *			8 - 1					3			30 30 30 30 30 30 30 30 30 30 30 30 30 3	2		*.:	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	9.			
EPL41 EPL43 EPL	 1/12/2024	2000	7.37	 183	28.1	 101	8:00	7	140	**************************************	200		 <۵	- 015	200 200 200					 0.8	- 50>	300	4

- Note: Treated water was not being discharged at Talbingo Reservoir at the time of EPL sampling.

 There is no 100th percentile limit for Nitrogen (Total).

 Water Quality Objective values Treated Water reference the predicted values for physical and chemical stress.

 Samples not required

 90 Percentile concentration limit/100 Percentile limit

 Inflows to STP and CWTP do not directly correspond to outflow at RO as much of the water is reused on site

Snowy Hydro 2.0 Main Works

EP1 49

EPL 48

EPL 47

EPL 45

EPL 44

0.64

0.10

0.20

0.04

0.42

0.04

0.24

0.04

0.56

Discharge volume (Megalitres)

0.56

0.18

0.04

0.97

0.15 90.0

0.13

0.04

0.72 0.57 0.50 0.85

0.02

0.15 0.23 0.22

0.09

0.46 0.60 0.41 0.70 0.69

0.08

0.23

0.71

0.09

0.21

0.06

0.40

0.30

0.08

0.19

0.09

82.0

0.50

0.29 0.46 0.53 0.55 0.84

0.09

0.16

90.0

0.37

0.00

0.08

90.0

0.54

0.09

0.36

0.04

0.07 0.08 0.07 90:0

0.17 0.10 0.17 0.16

0.04

0.04 90.0 0.05

0.84

EPL 43 * EPL 50 ^	Discharge volume (Megalitres)	3	0.44			1	*	3	3	3					-	*				35			10							8	3
Monthly EPL Sampling: 01 - 31 Dec 2024 - Treated Water																															
Monthly EPL Sampling: 01	Date	1/12/2024	2/12/2024	3/12/2024	4/12/2024	5/12/2024	6/12/2024	7/12/2024	8/12/2024	9/12/2024	10/12/2024	11/12/2024	12/12/2024	13/12/2024	14/12/2024	15/12/2024	16/12/2024	17/12/2024	18/12/2024	19/12/2024	20/12/2024	21/12/2024	22/12/2024	23/12/2024	24/12/2024	25/12/2024	26/12/2024	27/12/2024	28/12/2024	29/12/2024	30/12/2024

Water not discharged on this day

Note: The EPL discharge volume limit for EPL 43 and 50 is 4.32 megalitres per day. Compliance with this criteria was met during the reporting month.

0.67 0.62

0.08

0.08

0.24

0.04

0.57

0.42

The maximum flow rate capacity for Lobs Hole STP/PWTP during the reporting month was 4.4 L/s

The maximum flow rate capacity for Tantangara STP/PWTP during the reporting month was 0.0 U/s

EM, Monthly Monttoring January 2025 Table 1 - Surface Water Quality Data	Landary Data				The same of the same of	- 13	Objectives (see not	112	100000000000000000000000000000000000000			
River and Misor Weterco.	esus.		Temp (*G	00 (N)	Temp (*G DO (%) DO (mg/L) EC justice - XC 110 - XC 120 - XC 120		TDS (Mg/A) pH	02-20	Redox (mV)	Turtsdity (NTU) 2 - 25		
Date and Time	EPL Ste ID	Location Description	D.) dwel	(N) 00	DO (mg/L)	SC(juS/cm)	TDS (mg/L)	ā	Padox (mV)	Turbidley (NTU)	Field Consiserts	Context
4/1/2025, 2:01 am	57,0	Yerrangobily then, uptimen of the exploratory turnsi and construction pad	1943	sins	7.52	136	113		191	10	Surery day, clear water, so odour, slow flow.	This sample point is upstream of works and is therefore representative of background conflores.
4/1/2025, 2:35 em	67.0	Wellions One), upstream of Yernergobiliy liver and Wellions Orest, confluence	18.53	178	7.25	311	"	1.72	163		Surery day, cleer water, no odour, slow flow	This sample point is upstream of works and is therefore representative of background conditions.
4/1/2025, 10:32 am	na	Артрари кумпарыны домизимы од грук и да доминика	21.35	181	7.59	346	g	7.78	32	275	work day, clear water, so odour, slow flow	Low DO signs with reults upstream of works and reduced flow.
4/1/2025, 10:49 em	67/9	Yarrangoldty liver, downstream of the accorrendation camp and upstream of Tabingo learneds	23.54	183	25.5	141	g	7.36	ä	1,3	Surery day, clear water, no odour, slow flow, low flowing	Low DO aligns with reults spatterers of works and reduced flow.
4/1/2025, 9:15 am	BRIZ	Yerrespokity liver, immediately downstream of portilipad	25.41	27.1	8.50	138	8	#	153	200	Sunny day, clear water, to ordiour, slow flow, cottond a discrease in the water level notability	Manginally higher per alignity out of range. Follow up to occur in
4/1/2025, 2:54 am	EPLIA	Yarrangold Py liver, downstream of read construction areas	1943	20.0	6.46	333	=	745	170	4.9	Summy day, clear water, no odour, slow flow, low flowing.	Law DO aligns with the historical data recorded for this location in January 2005 especially with records flow velocity.
4/1/2025, 10:13 em	BLIS	Yarrangobily ther, downstream of road contruction areas	19'05	1716	7,62	136	=	7.62	172	3	Sunny day, clear water, so odour, slow flow, low flowing, noticed a dicrease level of water	Low DO silgers with the historical data recorded for this location in January 2004, escentistly with reduced flow velocity.
4/1/2023, 11:04 am	BRIG	Yarrangzößly Bher, downstream of road construction areas	11711	20.0	9579	140	15	10.0	8	а	Survey day, clear water, no odour, alow flow, very low level of water	LOW DO and high pit aligns with reals upstream of works and the reduction of water evaluable.
3/1/2025, 2:24 am	BT.24	Yamangobily Ever tribulary (Watancourse 2), directly downstream of road	1852	7	4.78	1,220,00	CORL	397	R	10	Sumy day, low flow, no odour, small stream, algae growth upstream.	Location has minimal water level, results are not continued representative.
12/1/2025, 7:06 am	B128	factambens liver downstream of Marks hoad	12.45	100	87.9	27	28	7.51	35	63	Survy day, Low flow, Smalls like horse pop and urins, horse tracks in streem.	Low DO silgra with the bessites data and remains with the upstream conditions.
12/1/2025, 6-48 am	1218	Excumbents Nest upotresm of Marka Road	13.22	57.2	5.58	24	23	7.41	192	10.4	Cear day, Water level bw. DO low, single point at calibration to 105% consisted. Same result returned.	In this sample point is upstream of works and is sharefore representative of background conditions.
18/1/2025, 8:94 em	DETAG	Kaliya Plain Creat, downstream of accommodation camp and leptown areas	12.52	2	81.6	R	12	7.36	208	154	Overcast, which day. Weste lamility coloured.	This sample point is upstream of works and is therefore representative of background conditions.
18/1/2025, 8:59 am	BRISE	Xellys Plain Creek, upstream of accommodation camp and laydown areas	1113	-	27	#	81	31.5	212	9	Overcent, which day.	Probe matherstoring, recalibration to occur atternoon of the 188h.
18/1/2025, 8:18 em	51/33	Murrumbidges illies, downstream of Tentangaia reservoir outlet	14.26	1000	8.25	#	118	711	206	23	Corress, which day, tow flow, Decomposing Algan ansil.	LOW DO and EC aligns directly with reults upstream of works.
18/1/2025, 7:35 am	*5	Numps Creek, upstreem of fantangere Roed	12.58	95.0	9.00	S	30	12.0	191	00	Owercast, which day, cow flow, Low turbidity.	Probe methodoxing, recelbration to occur attennoon of the 18th.
18/1/2025, 7:45 am	FLSS	Numper Oresk, downstream of Tentangere Road	13.00	28.5	10.16	582	8 11	7.16	195	9	Dwercast, which day, Low Row, Low larth.	Pribe malfunctioning, recalibration to occur afternoon of the 18th.
26/1/2025, 1-22 pm	675.36	Cemenons Crast, upstream of works in Bock Forest.	n	583	8.28	S	ss	953	162	3.5	Suntry day, clear water, low level of water, slow flow	This sample point is upstream of works and is therefore representative of background conditions.
28/1/2025, 2:19 pm	EP.37	Generate Creit, downstream of works in flock forest	28.32	21.8	44	2	*	7.03	188	126	wall water, stated water, ston flow	Figh turbality and low DO can be attributed to low flow and seasonal changes in January 2003.
15/1/2025, 11:59 em	25 May	OPICE insurface basin	35.55	24	2.73	consti	101	1.98	ņ	17.6	Hot surry day, Record rain overnight, Beah is alightly green colour. Non turbid	High EC is expected within the leachests storage infrastructure.
541	BRSS	OFICE surflece water upotream east	4		4	4	4	(3) (4)	18	4	This legation is dity	at.
196	FILSE	GROI surface water upstream west	*	ë	4	9		7	*	90	This location is divy	t
8	PILSS	GPCI surface water downstream	12	ije.	/% es = 5	:0 :0	ē	(3)	0.	39	This location is div	6.1
#S	29143	Mungar Creek surface worter downstream west from Tentanyara emplacement area	55	10	22	80	20	10.	15		The reservoir level at Tantangers is low and is not representable sample.	**
100	51.71	Surface water downstream of Merica amplicorness	(t)	i?	W	19	398	55	200	.9	Unable to access alte due to land dearing activities.	2
15/1/2025, 7:42 am	1811G	78 beari	2019	69.1	6.23	1,440,00	818	173	151	SIR	Chen summy day, Reamt sein bait night, Mentry of ducks in bash. Water is emy turbid, No- odksur, no ahren.	Low DO and deleteled EC due to namelf excernidating in the basin. Water was taken for the desirant at the process water thestiment plant or re-use where parameters where met.
	ST ST	AMTOT takein	12	in.	.54			5	3:	39	Sooks is coverily being relined. Carnet take sample.	183
	98743	Lividos Beatin	to	10	\$10	*		2%	*(1)		Uner under construction, No weter na sumple,	\$16
	BUSE	Auxil blanket översion mteritioting under QFO3 lines	55	1.0		8	÷	40	*5	e.	This bocation is div	
17/1/2025, 9-50 am	eena	Marica Laschida Basin-Turbay's Nest	14.62	TDZ	272	ozz	248	3	Ħ	Ñ	Witon, John of grout, Cheer which slay.	Low DO and elevated tucklidity can be attributed to the runoff accumulating in the additional balls. Water was taken for treatment, at this process, water treatment paint or re-use where personates where next.
17/1/2025, 10:17 am	EN.100	Marica Lower Lascheen Baulo USS Shaft	1873	77.8	7,60	128	¥	1	a	583	top of groun. Cheer windy clay.	Low DO with elevated EC and turbidity can be attributed to the nevel accommissing in the additional balls. Water was taken for treatment of the process water treatment plant or re-use where personations where next.
17/1,/2025, 9:59 am	ENTOI	Marics Leachdan Basin Spotl Pad	13.42	78.9	L.D	909	428	**	п	381	Witne, Late Figrout, Chee' windy day,	Low DO with elevated EL and turbidity can be attributed to the nacell accumulating in the wellment basis. Weter was taken for treatment at the process weter treatment plant or re-use where presentation where met.
11/1/2025, 9:51 am	BUTUS	Ravine Say Lanchels basin 1	23.1	100.6	2	00'051'1	¥	1.43	sm	133	Clear, no turistity, no odour, good for reuse, aurrry, firm yesterclay	Figh EC can be attributed to sainful overrught. Wester in this beath is used for irrigation and dust supreasion where parameters were met.

EPL 21266 In Situ Water Quality Measurements	EPL Monthly Monitoring January 2025	Table 2 - Reservoir Water Quality Data	Tolhiano and Tontongge Beservaire

Table 2 - Reservoir Water Ouslity Data	or Oundity Data					Water Dueling	Water Duelity Objectives [see note 2]	21				
Talbingo and Tantangara Reservoirs	ra Reservoirs		Temp (°C)		(1/8m) OG	EC (µS/cm)	TDS (mg/L)	Ha	Redox (mV)	Turbidity (MTU)	•	
				90-110		20-30		6.5-8.0		1-20		
Date and Time	EPL Site ID	Location Description	Temp (°C)	(%) OC	DO (mg/l)	EC (µS/cm)	TDS (mg/L)	Hd	Redox (mV)	Turbidity (MTU)	Field Comments	Context
15/1/2025, 8:47 am	EPLIO	Talbingo Reservoir, downstrean	25.8	63.5	217		89	America	184	0	Sunny day, Turb low.	Low DO and elevated EC align with results upstream of works. EC is consistent with background conditions in the Yarrangobilly River for January 2025.
15/1/2025, 8:27 am	EP171	Talbingo Reservoir, downstream of outlet	25.2	63.7	524	97	22	7.97	771	1	Sunny day, Dust or pollen on waters surface.	Low DD and elevated EC align with results upstream of works. EC is consistent with background conditions in the Yarrangobilly River for January 2025.
19/1/2025, 9:22 am	EPL28	Tantangara Reservoir, upstream of works in the mouth of the Murrumbidgee River	18.28	1001	10.27	30	19	7.76	212	8.6	Sunny day, clear water, no odour	All reading are within WQO limits.
19/1/2025, 9:50 am	EP129	Tantangara Reservoir, downstream of works area and upstream of lower Murrumbidgee River	19.19	92.4	8.54	SZ	16	7.1	241	8.9	Sunny day, clear water, no odour	All reading are within WQO limits.
19/1/2025, 9:30 am	EPL32	Tantangara Reservoir, Tantangara Intake. Downstream of construction works	18.94	616	8.54	36	а	7.52	89	7.1	Sunny day, clear water, no odour	All reading are within WQO limits.
18/1/2025, 12:31 pm	EPL38	Tantangara Reservoir, variable location dependant on tide and reservoir levels. Between the emplacement area and the ancillary facilities for emplacement activities	18.47	74.6	669	25	22	7.63	200	30.6	Overcast, windy day, Turb high at lakes edge due to wind.	Low DO and elevated EC with turbidity can be attributed to low reservoir levels in preparation for intake works.
18/1/2025, 9:46 am	EP139	Confluence of Nungar Creek and Tantangara Rezervoir, variable location dependent on tide and reservoir levels. Upstream of Tantangara construction works	14.94	06	60'6	72	18	7.53	201	9.6	Overcast, windy day.	All reading are within WQO limits.
4/1/2025, 1-58 pm	EPL40	Confluence of the upper Murrumbidgee River and Tantangara Reservoir, variable location dependent on tide and reservoir levels. Upstream of works	24.8	100	8.29	22.4	21	7.29	1981	413	Surmy, hot, windy. Water reliablely clear, moderately flowing, organic material and algae present, no odour or oily sheen.	All reading are within WQO limits.
19/1/2025, 10:05 am	EPI 46	Tantangara Reservoir, diffuser outlet dischanging into Tantangara Reservoir from Tantangara STP/PWTP	19.01	8	835	26	71	695	244	63	Surry day, dear water, no odour	All reading are within WQO limits.
19/1/2025, 9:57 am	EPL 51	Tantangara Reservoir, downstream of Tantangara STP/PWTP diffuser outes	1901	16	8.44	22	16	7.1	236	7.4	Sunny day, chear water, no odour	All reading are within WQO limits.
15/1/2025, 8:02 am	EPL107	Upstream monitoring of Ravine Bay emplacement area within Varrangobilly River	24.24	71.8	6.02	Đ,	35	91 29	170	18	Sunny day.	Low DO and elevated pit with EC align with results upstream of works. EC is consistent with background conditions in the Yarrangobilly River for lanuary 2025.
15/1/2025, 7:42 am	EPLICE	Monitoring of Ravine Bay emplacement area (center of PSE) within Yarrangobilly River	37.52	\$69.4	5.87	43	28	\$17	169	3.4	Oear sunmy.	Low DO and elevated ph with EC align with results upstream of works. EC is consistent with background conditions in the Yarangobilly River for January 2025.
15/1/2025, 7:29 am	EPL109	Updatesm monitoring of Ravine Bay emplacement area within Yarrangobilly River	23.04	813	697	85	. SS	6.97	175	63	Otear day.	Low DO and elecated EC align with results upstream of works. EC is consistent with background conditions in the Yarrangobilly River for January 2025.
Table 3 - Treated Water Quality Data	Ounlity Data					Water Quality	Water Quality Objectives (see note 3	3)	100			
Talbingo			Temp (*C)	(%) 00	(l/Sm) 00	EC (µS/cm) 700	TDS (mg/l.)	pH 6.5-8.0	Redox (mV)	Turbidity (MTU) 25		
Date and Time	EPL Site ID	Location Description	Temp (°C)	(%) OQ	(1/8m) OO	EC (µS/cm)	TDS (mg/L)	Hd	Redox (mV)	Turbidity (NTU)	Field Comments	Context
22/1/2025, 9:15 am	EPL41	Lobs Hole STP/PWTP Final Effluent Quality Monitoring Point. Downstream of final treatment, prior to discharge to Talbingo Reservoir.	25.46	63.1	217	191	105	6.92	170	20	Potential turb error, visually clear, no odours	All reading are within WQO limits.
Table 4 - Treated Water Dunity Data	Dunlity Data					Water Duality	Water Duality Objectives (see note 3)	31	8			
Tantangara			Temp (°C)	(%) od	(1/8m) OO	EC (µS/cm) 200	TDS (mg/l)	Hq.	Redox (mV)	Turbidity (MTU)		
Date and Time	EPL Site ID	Location Description	Temp (°C)	(%) od	()/8m) OO	EC (µS/cm)	TDS (mg/L)	Hd	Redox (mV)	Turbidity (NTU)	Field Comments	Context
22/1/2025, 11:00 am	EPLSO	Tantangara STR/PWIP Final Effluent Quality Monitoring Point. Downstream of final treatment, prior to discharge to Tantangara Reservoir.	20.4	7.28	78.7	209	87	7.44	176.5	22.49	Water was viribly clear. No odour	All reading are within WQO limits.
100	10		Ī			Ī						Ī

Table 5 - Groundwater Quafty Data	usity Data		-	Н		Water Quality Obje	ectives (see note.)					
6F01 Surface Water and	Groundwater		Temp (*C)	DO (%) OG	DO (mg/t)	EC (µ5/cm) TD5 (mg/L) p	TDS (mg/L)	-8.0	Redox (mV) To	Turbidity (MTU)	200	
Date and Time	EPL Site ID	Location Description	Temp (°C)	1 (%) OG	DO (mg/L)	EC [hS/cm]	TDS (mg/L)	pH Re	Redox (mV) To	Turbidity (MTU)	Field Comments	Context
20/1/2025, 9:41 am	95143	GF01 groundwater upstream east	15.82	21.6	2176	241	156	7.32	256	21.7	SWI 10.62. Clear sunny day.	All reading are within WQO limits.
20/1/2025, 9:59 am	EPL57	GF01 groundwater upstream west	17.69	23.5	2.23	248	161	7.9	722	20.7	SWL14.14m Clear sunny day.	All reading are within WQO limits.
20/1/2025, 11:05 am	EPLSS	GF01 groundwater downstream	20.05	20.6	1.86	1200	992	5.83	191	506	Clear sunny day, Swi 7,05m lo	Elwated EC is generally consistent with historical range for this location. Low pH will be monitored closely, however borehole pump extraction method is in the process of being upgraded.
25/1/2025, 9:55 am	EP168	Tantangara groundwater downstream West	14.98	608	8.16	×	22	61	195	8.0	Unable to take depirt due to the pump has been set up, clear water, no odour, sunny day to	Low pH is generally consistent with the historical data for this location. These full in line with curent seasonal changes.
25/1/2025, 10:08 am	EPL69	Tantangara groundwater downstream East	15.5	76.5	7,63	щ	20	6.36	161	116	Li SWL-3.25m TD-7.48m, sunny day, turbid water, no odour	Low pH is generally consistent with the historical data for this location. These fall in line with curent seasonal changes.
25/1/2025, 12:04 pm	EPL70	Tantangara groundwater upstream	17.67	54.2	5.16	68	09	6.45	202	1000	SWI. 6.40 m TD17.20 m, very turbid water, seems like sediments has been emplacement in TI the sterve, no odour	This location is upgradient of works and therefore representative of background conditions.
26/1/2025, 8:04 am	EPL 72	Marica groundwater upstream	12.53	109	6.4	98	24	4.87	328	62.1	SWL-36.62 m, sunny day, clear water, no odour	This location is upgradient of works and therefore representative of background conditions.
26/1/2025, 10:15 am	EPL73	Marica groundwater downstream	16.56	54.8	5.34	123	80	6.54	161	111	SWI-14.02 m; sunny day, turbid water,no odour	All reading are within WQO limits.
13/1/2025, 9:58 am	EP130	LMG groundwater upstream	20.04	18.4	191	976	195	6.77	25	62.2	SWL. 20.43m. Clear suriny day. Water is slightly turbid, sediment at bottom of sleeve no TT odour. Recent rain last night.	This location is upgradient of works and therefore representative of background conditions.
13/1/2025, 8:00 am	EPLS1	LHG groundwater downstream	17.53	19	1.82	814	125	6.77	97	845	SWL4.05m. Clear, sunny morning, Recent rain last night. Water is very clear, no odour. Lots of dark grey sediment at the bottom of steeve.	Elevated EC aligns with results upgradient of works.
13/1/2025, 9:44 am	EPL82	MY groundwater upstream	1912	13.6	1.25	2650	1700	6.61	99	84.6	ast night. Water is clear with a dirt like odour.	This location is upgradient of works and therefore representative of askeround conditions.
13/1/2025, 8:59 am	EPI03	MY groundwater downstream	18.49	16.6	155	563	360	6.17	95	160	SWL: 3.98m. Clear sunny morning. Recent rain last night. Water is clear, no odour. d	Exerted EC aligns with results up gradient of works. Low pH will be closely monitored at this location, however borehole pump extraction method is currently being upgraded.
13/1/2025, 7:28 am	EPLS7	MY groundwater downstream	17.4	95.7	9.16	285	374	5.71	331	1000	SWL 4.16 m. Clear, sumny morning. Recent rain last night. This bore has had some exceedances in Total N recently. Water is turbid, similar colour to 8.5 basin next to it. I utibidity has exceeded 1000 NTU.	Elwated EC aligns with results up gradient of works. Low pH will be closely monitored at this location, however borehole pump extraction method is currently being upgraded.
13/1/2025, 8:38 am	EPLSS	MY groundwater downstream	18.36	28.1	2.63	830	531	6.95	-150	6:0	SWL 3.42m. Clear sunny morning. Recent rain last night. Water is clear, slight sulphur odour. E	Elevated EC aligns with results upgradient of works.
13/1/2025, 9:18 am	EPLS9	LHG groundwater downstream	18.39	7.22	2.13	389	222	653	21	172	SWL 3.21 m. Hot sunny morning. Recent rain overnight. Water is slightly turbid with acidiment settling at bottom of sleeve, no odour.	All reading are within WQO limits.
20/1/2025, 9:26 am	EPL 90	GF01 groundwater downstream	16.05	8.09	5.99	Z.	-75	5.74	274	197	In SWI 14.11. Clear surmy day.	Low pH is generally consistent with the historical data for this location. Borehole extraction method is currently being upraded at this location
20/1/2025, 11:27 am	EPL 91	GF01 groundwater downstream	19.91	648	317	233	152	6.62	168	21.8	SWI 8.55m Clear aumy day. No hose ling enough to leave in well. Using shorter hose that is gremoved each time.	All reading are within WQO limits.
6/1/2025, 9:51 am	EPL 92	GF01 groundwater downstream	17.13	46.5	4.48	120	78	7.2	154	301	SWI-13.50 m, sunny day, turbid water, no odour	All reading are within WQO limits.
20/1/2025, 10:31 am	EPL 93	GF01 groundwater downstream	17.6	29.5	2.81	242	157	16.91	38	50.9	SWL15.72m. Clear sunny day.	All reading are within WQO limits.
20/1/2025, 10:25 am	EPL 94	GF01 groundwater downstream	17.52	24.3	232	170	110	632	97	83.3	Li SWL 13.52m Clear sunny day.	Low pH is generally aligned with bores in close proximity. This location will be closely monitored.
20/1/2025, 10:56 am	EPL 95	GF01 groundwater downstream	20.63	20.4	1.82	702	449	6.31	131	65.5	SWL 7.15m Clear sunny day.	Elavated EC and low pit have been consistent at this location for this current seasonal range. This location is currently undergoing normales in it's extraction method.
6/1/2025, 10:17 am	EPL 96	GF01 groundwater downstream	17.32	24.4	233	860	551	7.14	38	279	SWL-5.17 m, zunny day, turbid water, no odour	Elevated EC is consistent with the historical ranges for this location for January 2025.
20/1/2025, 11:44 am	26.143	GF01 groundwater downstream	11.61	18	1.66	424	276	6.02	121	4.1	a wgc91MS	Elavated EC and low pH have been consistent at this location for this current seasonal range.
12/1/2025, 7:35 am	EPL102	Groundwater monitoring associated with the Marica emplacement area on Marica Trail	12.04	28	6.92	402	261	7.53	7	42.7	SWL8.76. Clearday.	Elavated EC can be attributed to land clearing and ground disturbance in close proximity to sample location.
25/1/2025, 11:42 am	EPL103	Upstream groundwater monitoring west of the Tantangara emplacement area	16.39	64.2	6.28	95	32	6.41	214	4.2	SWL-11.06 m TD-21.7 m, sunny day, clear wanter, no odour bs	This location is upgradient of works and therefore representative of background conditions.
25/1/2025, 10:29 am	EPL104	Dowslope groundwater monitoring east of the Tantangara emplacement area	10.01	45.7	451	49	32	6.27	197	609	SWI- 4.62 m TD- 12.46 m, clear water, sunny day, no odour	Low pH aligns with results upgradient of PSE.
25/1/2025, 11:19 am	EPL105	Dowslope groundwater monitoring east of the Tantangara emplacement area	16.85	55.9	5.41	170	25	7.09	182		mp has been set up, clear water, no odour	All reading are within WQO limits.
9/1/2025, 8:51 am 9/1/2025, 9:52 am	EPL113	Upstream east monitoring of Ravine Bay emplacement area Upstream west monitoring of Ravine Bay emplacement area	15.59	102.6	10.58	382	248	7.42	154	752	Turbid, no odours, SWL 290mbtoc Visually chest, no odours, swl: 3162mbtoc	All reading are within WQO limits. This location is upgradient of works and therefore representative of
9/1/2025, 9:12 am	EPL115	Downstream east monitoring of Ravine Bay emplacement area	15.52	18.1	1.8	365	237	733	-20	278	Turbud, no odours, SWL-10.92mbtoc	Daysted BC directly aligns with results upgradient of PSE.
9/1/2025, 10:18 am	EPL116	Downstream west monitoring of Ravine Bay emplacement area	16.55	71.3	7.09	181	118	721	120	1,000.00	Very turbid, no odours, swit 8.01.	All reading are within WQO limits.
9/1/2025, 10:35 am	EP1117	Downstream monitoring of Ravine Bay emplacement area	16.39	11.6	113	136	99	6.63	9	576	Turbid, no odours, swi: 15.53	All reading are within WQO limits.

S2-FGJV-ENV-REP-0127 Rev. B – June 2025 Page 34 of 49

rks	ter
n Wo	dwa
Mail	Srour
0.70	25.0
Hyd	ry 20
NOW	anne
S	1.31
	DK: 0
	mpli
	PL Sa
	Hy E
	out

Monthly (P. Sampling Cr. 31 Jan use a law shaper of the s	Merr Garly Objetite Vide* 1.1.1 1.1.2 1.1.3 1.1	- [] 	- 	9 100 100 100 100 100 100 100 100 100 10	PM4 PM4 PM4 PM4 PM4 PM4 PM4 PM4	87 107 107 107 107 107 107 107 107 107 10	N 1903	nun	anus .	mo	na ma	and ma	ma .	60-63	91.10	TEND!	1901	1 1000	PL SEA	DASS BUSS	and s	BLAB.	10000	NOT AS	
100 100	Ther Quality Objection Value ** *** To all the Committee Committe	- 					20	GR73	en en					29.00	SPL 16	16 763	19101	59	50	100		60	cornes	101701	
According to the desired from the control of the co	Fer Quelly Objective Volume 1 6.2-60 Month Objective Volume 1 6.2-60 Month Objective Volume 1 6.2-60 Month Objective Volume Objective Volume Objective Volume Objective Volume Objective Volume V																		_			_		2000001	mne some
100 Marie (100 Marie (IL D-B. When Coulty Collective Vision										-								_						
A CONTROL OF CONTROL O	16 2-8 (2-20) Where Caship Collectors you as Young Caship Collectors you as Young Caship Collectors you as Water Caship Collectors you are with the Caship Ca						H	25/00/25	50/10/13	H	L	H	H	H	32/03/32	30/01/25	H	H	H	H	H	H	H		25/10/8 50/10/52
1	Wear Classify Ciliperies you wanter Classify Ciliperies you wante						237 9	1579	24.9	22.5	199	4.0	25.5	157	3.74	279	3.3	165	632 6	6.31 7.54	20.79	7.53	6.41	6.27	2.50
	Water Caulity Colorcius vane						5	223	57.6						. 22	233	S is	51	25					ш	Н
1	Water Caulity Chipecter Visua Water Caulity Chipecter Visua Water Caulity Chipecter Visua Water Caulity Chipecter Visua Water Caulity Chipecter Visua				 9 9			101	- 125						324	101					_		Н	Ш	Ц
N STATES () () () () () () () () () (Water Custy Cityche Value Water Custy Objective Value Water Custy Objective Value Water Custy Objective Value	+		 	aa saasaa			10.56	20.04						16.06	10.91						-	Н	Ш	Н
100 100 100 100 100 100 100 100 100 100	Water Chailty Chipether Velac Water Chailty Chipether Velac		4 4 4 4 4 4	e de la compa				24.8	28.6		-			-	62.8	34.9	S.	51	2			-	-	Л	-
20 mg/h 5 mg/h 1	Water Quality Dispetive Veloc Water Quality Dispetive Veloc	HHH	 	\mathbf{H}		-	-	111	70	4	4	-	4	4	380	37.8	-	-	4	4	4	1	4		3.5
70	Water Quilty Objective Velocity Water Quilty Objective Velocity	+	-	++++			ş		100		Ş		8	00		0.00		ş		8		380			
HATA 10 HOTA 10 HOTA 10 HOTA 100 HOTA 1	Witter Quality Disjection Vision	1111	-	-		1,400	22	Œ	36	37.5	172 31	206 6,000	9 0	101	100	×	615	103	77 17	124 372	21	111	an a	80	13 361
1987. 3.0 1987. 3.0 1987. 000		Н	1				+	22	346	1	-	-	-	3	=	115	42	-	-	-	-	+	*	a	413
Hg/A 3.0 Hg/A 3.0		+	++			10		100		000	000	100	400	550	600	300	525	500			- 25	600	150	1	200
100 100 100 100 100 100 100 100 100 100	100	+	+		+	-	-	92	10	100	100	-	-	R	30	or or				4	+	+	a	430	-30
001 VIIM	- 12	į	ço.	\mathbb{H}			50	9	9	40				R	240	130	30	>	8	d			342	240	2,540
The second secon	No Water Quality Disjective Vision	-300					-100	G120	300	600	200	200	0000	200	100	300	- 100					200	<330	100	200
Managem Tatali	250	200	300			-		c100	300	000				300	300	300	<220		3				900	100	3000
Assistive Phospharas 1	12	22	118	11	4.		50	17		*			d	4	12	30		>	20	d			a		
	20	. 00	70	00		1,232		90	40	180	30 3	3130		90	300	98	70	220	100	1000 110	001		40	30	20
		- 37	3%	378	- XX	38	28	8	37	3%	- 8%	38		38	37	- C	- 25h	- 30		68	386	37	20	88	58
Cyanide Total		- 04	of	- 49	46	ot of	of	of	- col	40	- 14	46 14	40		- 46	- 90	- 90	- 90		- 04	100	- 49	406	40	- 10
		33	2	3			Ц		285	3	3	3		3	20	88					3	3	Ц		338
Oll and Greate 12	at.	44.0	410	410	<1.0	<10 <10	0.00	42.0	440	400	48.0	410 410	44.0	41.0	<1.0	47.0	47.0	4.5	4.0	410	412	44.0	<1.0	×2.0	44.0
Metals																									
Abantalum (botal) 5 No.1	No Water Quality Objective Value	244	355	2,110		1,110	477	200		-		-					-		2		H		-	-	
Munichm (disolved) 1	22	10	0					8	52	45	45	. 50	10	9	35	40	SS.	4	ò	4	50	9	٧	45	V
HEN 02	No Water Quality Objective Value	40.3	+		+	+		8	1		+	-	+	4			(4		8	+	+	+		Y.	0
Hell 0.3	2.0	40.3	1		+		2 403	483	2.5	17	115	2.7 45.2	13.3	0.3	-023	0.3	6.0	17		45 403	0.3	970	7	<0.2	40.2
HEPA 0.2	No Water Quality Objective Value	-		-	+					-	-	-	-				4			-	+	-			0
VE (disolved) HEV 0.3	0.00	+	+	+	+	+		0.3	40.3	100	+	403	403	40.0	003	603	-0.3	00.2	40.2	40.3	100	40.3	G.	40.2	0.5
Turn US	No Water Quality Obective vace	+	+	+	+	+	+		-	+	+	+	+	1		1		+	+	+	+	+			
minute (1.3	1	1	7	+	+	+	9	200	470	10	407	11	125	2	425	470	- ATT	+	+	77	TID.	dis.	43	77	20
Medical Control of the Control of th	Water County Copies on Value	100	\dagger	+	+	+	+			+	1000		ł						+	+	+			*	5
CO Vanc	No Water Quality Objective Value	*1		35.1	0.1	0.3																			
900		40.1	702		L	L	L	48.1	100			40.1		48.1	+0.1	40.1	972	L				-01	48.1	702	-0.1
102 D2	No Water Quality Objective Value	18.0	92.2	_			17		7		L					+					_	_			0
10 01	1700	82	27.6	ŀ	H	H	L	63	202	101	254	163 173	154	12.4	1.9	325	58.1			323	423	224	17	83	17.0
Neckel Partall 0.1 No.V	No Water Quality Objective Value	502	174		Н			7	2 70 6								0.00								0.00
							5	425	12.0	0.0	2 8:0	2.5	2.0	118	2.6	3.1	33	50	15	2.4	2.6	0.8	425	507	3.0
100 7/101	No Water Quality Objective Value	+	+	-	-					-	+	-	-	1		-	(A			-	+	+		1	0
chood) 0.01	0.00	40.00	10.00	1	+		1000	1001	1007	40.01	40.00	10.00	1000>	1000	1002	1002	1000	1002	90 100	10.00	10 00	10:0>	40.00	-2.01	10.0>
Total Total	No Water Quality Objective Value		2	26	41	22				-			1				-	-	0		-		I	-	1
Zinc deligational	3.4	2	ct	13	34	2 4	B	P	- 12	-41	2	10	- 41	.75	-		12	- 75		32 3	15	41	45	1	00

EPL109

EPL108

EPL107

EP151

EPL46

EPL40

EPL39

EPL38

EP132

EP129

EPL28

EPL11

EPL10

Snowy Hydro 2.0 Main Works
Monthly EPL Sampling: 01-31 January 2025 - Talbingo and Tantangara
Reservoir

Pet	Analyte	Unit	Limit of Reporting	Water Quality Objective Value*	
extitute Conductivity pls Unit extitute Conductivity pls/cm mode and control Potential mV mode and control Potential N. anturation mode and control Potential N. anturation mode and control Potential mg/L 5 mode and control Potential mg/L 10 mode and control Potential mg/L 10 mode and control Properties mg/L 10 mode and control Properties mg/L 100 mode and control Properties mg/L 100 mode and control Properties mg/L 100 mode and control Properties mg/L 1 mode and control Properties mg/L 4 mode and control Properties mg/L 4 mode and control Properties mg/L 0 mode and control Properties mg/L 0 mode and control Properties mg/L 0 mode and control Properties mg/L 1	Field				15/1/2
Part Part	Hd	pH Unit	3	65-8	7.62
National Electrical Conductivity	m2/cm	- 50	20-30	46	
V.C.	Oxidation Reduction Potential	Λm	84.	No Water Quality Objective Value	184
Year	Temperature	ů	A)	No Water Quality Objective Value	25.85
NTU	Dissolved Oxygen	% saturation	S!	90-110	63.5
	Turbidity	UTN	8	1-20	0
Color Color Color	Laboratory analytes		850		
Interest mg/l 1 1 1 1 1 1 1 1 1	Total suspended solids	mg/L	2	No Water Quality Objective Value	5
Park Pagh 10	Hardness as CaCO ₃ (filtered)	mg/L	1	No Water Quality Objective Value	43
10 10 10 10 10 10 10 10	Nutrients				
Page	Ammonia as N	He/L	10	10	20
100 100	Nitrite + Nitrate as N (NOx)	1/8H	10	10	<10
100 100	Kjeldahl Nitrogen Total	1/9H	100	No Water Quality Objective Value	200
Televis 1987 1	Nitrogen (Total)	1/8H	100	350	200
tal told year 2 or 1 o	Reactive Phosphorus	1/8#	1	8	2
High High 4 1 1 1 1 1 1 1 1 1	Phosphorus (Total)	1/8/1	10	10	30
Heat Heat Lead	Inorganics		21		
	Cyanide Total	1/8H	4	7	40
	Hydrocarbons	5000			Second Contract
	Oil and Grease	mg/l	1	5	41.0
	Metals			1001	
c (distorbeed) pig/L 0.2	Aluminium (dissolved)	1/8H	5	55	\$
High Garachee Hg/L 0.2	Arsenic (dissolved)	H8/F	0.2	13	0.5
	Chromium (III+VI) (dissolved)	1/81	0.2	1	-0.2
High Fig. Continue High Continue Co	Copper (dissolved)	1/8H	0.5	14	-0.5
disolvee 1997 0.1	Iron (dissolved)	Hg/L	2	300	36
Institute Inst	Lead (dissolved)	Hg/L	0.1	3.4	-0.1
(discolved) Hg/L 0.5	Manganese (dissolved)	1/8H	0.5	1,900	2.0
discolete pg/L 0.01	Nickel (dissolved)	HE/L	0.5	11	-0.5
Figure F	Silver (dissolved)	Hg/L	0.01	0.05	-0.01
Coliforms CFU/100mL 1 mixed Oxygen Demand mg/L 2	Zinc (dissolved)	Hg/L	1	89	7
GU/100mL 1 mg/L 2	Biological			The second second	
mg/L 2	Faecal Coliforms	CFU/100mL	1	10/100^	290
	Biochemical Oxygen Demand	mg/l	2	√2/I	42

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		15/1/25	15/1/25	19/1/25	19/1/25	19/1/25	18/1/25	18/1/25	4/1/25	19/1/25	19/1/25	4/1/25	19/1/25	19/1/25
186 779 250 <td>6.5-8</td> <td>7.62</td> <td>79.7</td> <td>7.76</td> <td>7.1</td> <td>7.52</td> <td>7.63</td> <td>7.53</td> <td>7.29</td> <td>6.95</td> <td>7.1</td> <td>8.16</td> <td>8.17</td> <td>6.97</td>	6.5-8	7.62	79.7	7.76	7.1	7.52	7.63	7.53	7.29	6.95	7.1	8.16	8.17	6.97
1564 1777 2122 2441 448 1870 2004 1894 1870 1894 1870 1894 1870 1894 1870 1894 1870 1894 1870 1894 1870 1894 1894 1870 1894 1870 1894 1894 1870 1894	20-30	46	79	30	22	56	38	22	22.4	56	25	49	43	85
25.85 25.25 18.28 18.94 <th< td=""><td>er Quality Objective Value</td><td>184</td><td>177</td><td>212</td><td>241</td><td>-48</td><td>200</td><td>201</td><td>199.1</td><td>244</td><td>238</td><td>170</td><td>169</td><td>175</td></th<>	er Quality Objective Value	184	177	212	241	-48	200	201	199.1	244	238	170	169	175
613 613 614 615 615 616 616 616 617 618	er Quality Objective Value	25.85	25.2	18.28	19.19	18.94	18.47	14.94	24.8	19.01	19.01	24.24	23.75	23.04
4 1 8.6 8.9 7.1 306 9.6 413 6.3 4.5	90-110	63.5	63.7	109.1	92.4	616	74.6	06	100	06	16	71.8	5.69	813
45 45<	1-20	0	1	8.6	8.9	7.1	30.6	9.6	4.13	6.3	7.4	31	3.4	6.3
10 10 10 10 10 10 10 10	er Ouality Objective Value	9	9	9	9	9	34	0	9	9	\$	0	9	17
20 50 40 40 40 40 10 10 40 40 40 5 4 4 40 10 10 4 2 200 200 300 300 400 200 300 400 200 200 300 300 400 200 300 400 20 40 30 40 4 4 4 4 4 20 40 40 40 50 60 80 40 40 20 40 50 400 50 80 80 40	er Quality Objective Value	43	38	6	6	6	6	13	6	6	Q.	17	14	14
40 50 40<		ş	5		9	40	9		9	01	40	**		
100 20 20 20 20 20 20 20	OF	20	2	dio.	9.	3	or o	07	OF .	olo,	072	or c	21	a ·
100 100	10 m	0.00	000	700	4 66	000	0	100	4 000	7	015	75	0	7
2.0 4.0 <td>ser quality objective value</td> <td>200</td> <td>300</td> <td>300</td> <td>8 8</td> <td>400</td> <td>8</td> <td>300</td> <td>300</td> <td>8</td> <td>300</td> <td>300</td> <td>200</td> <td>300</td>	ser quality objective value	200	300	300	8 8	400	8	300	300	8	300	300	200	300
46 41 42 43 43 43 44 45<	arr.	3		3	3	,		007				3	3	3
dd dd<	0,	7	9 9	1 5	- 5	# 5	0 60		4 0	1 0	4 5	0	7	7
44 44<	222	2		3	R	8	8	3	8	3	8	3	2	9
d0 d10	7	Ą	15	4	40	p	4	8	Ą	to.	4	Ŋ	rs	75
10 10 10 10 10 10 10 10														
c5 c5 30 30 30 31 27 25 30 65 63 </td <td>5</td> <td>470</td> <td>470</td> <td>47.0</td> <td>410</td> <td><1.0</td> <td><1.0</td> <td>410</td> <td>410</td> <td><1.0</td> <td><1.0</td> <td>970</td> <td>40</td> <td><10</td>	5	470	470	47.0	410	<1.0	<1.0	410	410	<1.0	<1.0	970	40	<10
055 053 053 053 053 053 053 052	55	5	40	30	30	30	31	22	25	30	33	9	9	40
402 403 403 <td>13</td> <td>0.5</td> <td>0.3</td> <td>0.3</td> <td>0.3</td> <td>0.3</td> <td>0.3</td> <td>-0.2</td> <td>-0.2</td> <td>0.3</td> <td>0.3</td> <td>0.2</td> <td>-0.2</td> <td>0.2</td>	13	0.5	0.3	0.3	0.3	0.3	0.3	-0.2	-0.2	0.3	0.3	0.2	-0.2	0.2
10,05 40,1	1	-0.2	<0.2	-0.2	-0.2	-0.2	<0.2	-0.2	-0.2	-0.2	-0.2	-0.2	<0.2	-0.2
156 156 278 273 280 215 161 77 278	14	40.5	-0.5	-0.5	<0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	<0.5	-0.5	-0.5
10 10 11	300	36	16	278	273	280	285	161	77	278	310	9	9	5
2.0 4.5 1.6 1.7 1.6 2.0 4.5 5.7 1.7 1.5 1.5 2.0 4.5 5.7 1.7 1.5 2.0 4.5 2.0 4.5 2.0 2.5	3.4	-0.1	-0.1	-0.1	.0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	.0.1
405 405	1,900	2.0	40.5	1.6	1.7	1.6	2.0	4.5	5.7	1.7	1.8	<0.5	<0.5	<0.5
4001 4001	11	<0.5	-0.5	<0.5	-0.5	<0.5	<0.5	-0.5	<0.5	-0.5	-0.5	<0.5	<0.5	-0.5
d d	0.05	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	<0.01	-0.01	-0.01	+0.01	-0.01	-0.01	<0.01
590 2.700 100 - - - - - -2 -2 -3 -3 - <	00	4	P.	4	4	4	4	4	4	d	d	4	4	4
590 2,700 100 .														
2 2 3	10/100	290	2,700	100	7	×		n		X	80	7	37.0	÷
	1/5	42	42	m	***				1 No. 1	7.0	42	·	(F)	•

Where Quality Objective values for Tablingo and Tantangara Reservoir refer to the default trigger values for physical and chemical stressors in south-east Australia (fresh lakes and reservoirs) for the protection of 95% of aquatic species ANZECZ / ARMCANZ (2008), they are not pollutant limits imposed
 * Apply percentive concentration limits
 * Somple not required at this location.

Month	lly EPL Sampli	ing: 01-31 J	Snowy Hydro 2.0 Main Works. Monthly EPL Sampling: 01-31 January 2025 - Surface Water			-								-				-					3									- 10						_
mpleuv	Unit	Limit of Reporting	Water Quality Objective Value*	200	Ē	2	S.	E C	and a	Bells	Pers	7	B B B B B B B B B B B B B B B B B B B	in in	ma ona	H	Maria de la companya	NT.	d d	G G	2	9	200	BAS	and a	II II	ŧ	900	e de la composition della comp	Datas Datas	BUTTO		PK108	BKIII		BATTS	BATT	_
Target Control				4/03/25	4/01/25	4/01/25 4	4/01/25		4/01/25	4/01/25	4/01/25	3/01/25 12	1/61/25 125	D/81 22/01/23	18/03/25 18/03/25	5/10/81 51	25 18/01/25	18/03/25	26/01/25	25/10/07	13/61/75	. O	A C	A.O	Div	0.4	11/01/25	ANO.	O AO	v 17/01/25	25 17/03/25	87/1/12	11/1/25	DA	044	40	100	_
ī	,		151	87.8	7.72	27.2	7.26		292	7.62		2.68	7.51	7.82	-	27.7	-	7.16	0.26	7.03	101	10	Ad	No.	AG.	la.	11.11	-	-	Dry 9.34	-		-		AG DA	160	10	_
Dectrical Conductivity	mt/\$#	63.	80-350	136	118	145	242		115	136	140	1220	Н			Н	Н	22	20	23	1250	Aug	Aug	Aug	AG	Dry	1490		o Ao			_			Acc	Aug	Aug.	_
Osidation Reduction Potential	111	3	No Water Quality Objective Value	141	183	164	153	133	170	172	0.7	2.0	158	192 20	208 233	302	191	195	162	185	-115	Dry	Dry	Jul Day	AG .	Dry	151	Dw	Ov D	Dry III		111		Dry	Dry	Dry	Dry.	_
Temperature	34	68	No Water Quality Objective Value	19.61	1821	22.25	11.54	19.58	12.51	20.63	22.23	18.52	Ц		9	88,	Щ	_	п	28.32	25.55	Aug.	Det	Aug.	ΔO	Dry	20,35		O Aug	24.62		Н	Н		Dry	ALC:	Aug.	_
Dissolved Oxygen	N saturation	25	90-310	88.5	84.7	15.7	15.7	97.1	70.9	84.9	78.9	51.3	53.4	57.3 85	85.8 83.	80.6	93.8	04.2	10.3	71.6	34.1	Dry	Dry	Dry	Dry	Dry	1003			Dry 78.1	211	78.9	1001	Dry	Dry	Dry	Dry.	_
Turtidity	NIL	120	2.25	0.54	**	9.7	2.2	9.0	4.9	1.1	1.2	Ц	Ц	Ш	2.4 0	5.7	Ц	0	2.0	33.5	17.6	Dry.	Dey	Der	ΛO	Dry	843	Ory	Ory O	Ц	Ц	Н	Н	Dev	Dry	Ory	, do	_
Laboratory analytes					l	l	H	l	l	l	l	ŀ	Н	H	Н	H	Ц	Н		l							ΙL	ŀ	ŀ	ŀ	ŀ	ŀ	ŀ	ļ				_
Hardren at CaCCO	mg/.	-	No Weller Quality Objective Value No Weller Quality Objective Value	9 1	60	20	9 2	9 1	0 2	0 t	0 :	7 202	9 11	20 00	5 6	- 0	0 :	9	9 12	a 00	11	Ad d	A A	100	AG DA	Ad d	31	NO OW	000	242	20	45,	201	8	400	8 8	200	_
1		ļ				1	1	1		1	1		1	ı	ł			1										1	t	ł	l	1	ł	1				_
Ammonia as N	ME	30	п	<10	430	410	430	20	dD	<10	10	<10	30	910	10 30	2	430	-10	92	91	30	MO	Add	Day	Day	Dr.	230	wo	O AO	Dry 360	36	30	32	Dry	DIV	A.O	NO.	_
Niythe + Mitrate as N (NOx)	HST	gt	13	OI.		22		et				14,600	Н		10 43		Н		22	,	25,920	10	Dry	A.C	Å.	2.0	10,500					-	-		Dry	140	10	_
Kjeldahl Nitrogan Total	HEL	202	No Water Quelity Objective Value	<100	4000	200	100	100	4300	100	<100	3,300			200	101	320	200	200	400	3,200	Dry	Dev	Dry	AG .	h/G	2,000	2			3,100	e e	_		Dey	Å0	Dry	_
Mirrogen (Total)	HBY	100	250	<100	*100	100	100	100	+100	100	_	17,700	200	100	100 300	400	Н	Н	200	400	30,100	A.G	Day	A.O.	Dry	d.O	11,100		Н	Н	Ц	31,000	18,300		AND	Day	Day	_
Reactive Phosphorus	MAL	ef.	25	*	40	10	*	4	**	1	49	74	,		9	0	7	1	4	0	7	Dr.	Dry	Der	NO.	Dry	15	o.	a Ao		**	10	9	Dry	DA.	6	40	_
Phosphorus (Total)	Part	gt	R	95	2	92	R	2	8	9	2	92	40	20	40 40	90	2	100	Я	R	9	Day .	Dey	dia.	Dy.	n d	202	AG.	o wo	5	100	100	33	Dry	Ã.	ł	ě	_
Inpegaries Cyanida Total	784		*	*	40	*	1	2	7	7	2	7	7			7		10	*			40	Drv.	8	AD	200	***	AND.	20	90	7	7	4	Ad	AG	0.4	20	_
					1	ł	I	1	ĺ	1	١	ł	L	1	ł	ı	ı	ł			1	1	1				ı	ı	ŀ	l	ł	ł	ł	L		l		-
Oil and Greate	mg't.	-		<1.0	410 410 410	41.0	41.0	41.0	41.0	<1.0	43.0	410	43.0	4.0	40 44	010	41.0	410	41.0	410	43.0	Dry	Dry	Aug	Ad	A.O	41.0	ΔO	Ov.	Ory 42.0	-413	979	C15	À	Au	A.O	Day	_
Metals																													Н									_
Alaminium (total)	MAN	9	Nn Weter Quality Objective Value														٠		-		22	å.	Dry	Det.	AG .										-			_
Ataminium (dissolved)	HAL			45	9	2	4	9	9	9	5	43		7	30 33	33	23	22	202	×	n	Dry	Dev	Diry	Dry	D.V.	20	Ovy	Ovy O	Ory 3.2	63	25	0	Dry	Dry	Dry	Dry	_
Arrente (total)	HEL	0.2	No Water Quality Objective Value				9			9		4	+	+	+	+	+	+			17	M	Dey	Dey	λά.	0		+	+	+	+		+		1	,		_
Annual disclored	HEL	95	0.0	50	2	50	50	50	88	82	82	602	97	93	40.2	0	92	202	0.6	22	2.6	8	à	ă	Ar.	à	1	ð	a B	25	27	92	1	ă	8	å	δ	_
Chromina Haven (Service)	186	0	No Wallet Questly Objective value											. ;	1						9 1	6	ALC:	100	Dev						1		3.0	0700				_
Copper (total)	i	0.5	No Weber Quality Objective Value				,					╀	L	+	⊦	₽	₽	╀			67	8	B	304	λū			╀	H	╀	ŀ		ŀ		450			_
Copper [dissibated]	1964	0.5		40.5	+0.5	40.5	101	40.5	405	40.5	10.5	10.5	103	40.5	40.5	5 d> - 1	40.5	10.5	40.5	40.5	90	Dy	Dev	Aug	AG .	Dry	1.1	Dry	O AO	Or 40.5	0.1	113	40.5	Dry	Dry	Dry	Dry.	_
Iran (total)	HEL	74	No Water Quelity Objective Value		94	i i	10					33	L		H	H	Н	H	100		25	40	Dev	Der.	AG	5		H	H	H	L		8		-		100	_
Iron (dissolved)	HEL		300	4				4	s	9			67	20 02	63 44	242	110	112	316	OHE	0	Dry	Dey	Aug Day	AG	(A)	17.	, Aug	o Ao	S yes	0	D	0	Dry	AG	Dry	Aug.	_
Lead (total)	181	10	No Water Quality Objective Value													-		+			101	Ã,	Dry	Dry	A DA	1		+	+		+	+	1	+				_
To an identification of the control	H	1		1	1111	+	i	1	1	100	i	Ŧ	+	+	+	+	4	100	-	7	i	5	1	5	1	5	*00	M	6	100	1	100	+	A.	À	5	5	-
Manuscrap (Supplied)	and the	000	1.700	11	4.8	1.4	4.0	0.0	- 22	1.5	2.2	300	8.3	2.7	4.5 2.3	14	4.6	1.1	37.0	1.0	2.4	100	Des	200	AO	0.0	*0.5	Dev	o wo	3.6	100	5	0.0	Dev	Des	8	NO	_
Nichel (tetal)	HEL	5.0	No Weier Quality Objective Velue		,							L	L		-		Ш				40.5	10	A-G	No.	ye.	,			H				,	7		,		_
Nickel [dissolved]	HEL	0.5		40.5	40.5	40.5	40.5	40.5	905	40.5	403	2.4	40.5	40.5	40.5	s on s	505	40.5	40.5	40.5	40.5	A.C	Day	Aug	λig	Dry	90	Dry	o Ao	Ony 46.5	0.0	0.0	77	Dry	Dry	AG.	λū	_
Stree [total]	MAK	10.0	No Water Quelty Objective Volue		4		7.4					Ц	Ц	Ц	Н	Ц	Ц	Н	74		100*	Day.	Dry	Ory	NO.			Н	Н	Н	Ц	Ğ	Н	Ц		2	9	_
Street dissolved	HE!	10.0	200	40.01	40.03	40.01	10.01	1001	10.01	10.01	10.01	10.01	40.01	0.01	10:01 40:01	10.00	10/00	dim	-0.02	10'0'	10.00	46	Dry	Der	ΔV	Dry.	10.00	W.	O. AO	Dry 1003	100	TI D	10.01	ř.	Day.	ä	Б	_
Direc (horbari)	HEL	-	No Water Quality Objective Value		1	1	1	1	1	1	1	+	+	+	+	+	+	+	1	1	1	100	A I	A I	A I	1	-	+	+	1	+	+	+	-	1	1	1	_
Dry (displyed)	148.5		2.4	4.1	47	17	44	4.2	ō	ø	42	20	4.1	4.0	th ch	179	47	4.5		4.2		A	440	Die.	Dry	6.63	4.1	AKC	ON.	CPV 4.1	47	4.5	4.1	AKI	AKI	DAY	CAY.	_

Monthly EPL Sampling: 01-31 January 2025 - Discharge Water

MIL/day MIL/day	Analyte	Unit	Limit of Reporting	Water Quality Objective Value*	
Mu/day	Flow Rate				22/01/
PH Unit PH	Inflow	ML/day	10	36	20
PH Unit PH	Outflow*	ML/day	*	4.32 (EPL 43 / 50)	
PH Unit	Field				
Incidentifying Inci	Н	pH Unit	59	6.5-8.5	6.9
tion Reduction Petential my restature	Electrical Conductivity	µ5/cm	22	700 (EPL 41) / 200 (EPL 50)	16:
New Compane	Oxidation Reduction Potential	Λm	36	No Water Quality Objective Value	170
No.	Temperature	J.	r	15	25.4
State Stat	Dissolved Oxygen	% saturation	6	No Water Quality Objective Value	63.
State Stat	Turbidity	NTU	S.	425	20
Migraphed solids mg/L 5	Laboratory analytes				L
ses as cacO ₂ (filtered) mg/l 1 nia as N PEC 10 10 P	Total suspended solids	1/Bm	2	5/10	\$
Noting as N Not No	Hardness as CaCO ₃ (filtered)	mg/L	1	No Water Quality Objective Value	₽.
Notice as N (box) Ng/L 10	Nutrients				
Mail	Ammonia as N	1/2H	10	200/2000v	3,03
Mitrogen Total Mg/L 100	Nitrite + Nitrate as N (NOx)	1/2H	10	10	310
Pen (Total) Peg/L 100	Kjeldahl Nitrogen Total	1/3H	100	No Water Quality Objective Value	5,20
horror (total) Hg/L 1 horror (total) Hg/L 10 be Total Hg/L 4 nin Mg/L 3 d Grease mg/L 5 ninm (dissolved) Hg/L 5 inium (lassolved) Hg/L 0.2 inium (lassolved) Hg/L 0.5 dissolved) Hg/L 0.1 fidesolved Hg/L 0.1 fidesolved Hg/L 0.1 fidesolved Hg/L 1 fidesolved Hg/L 1 fidesolved Hg/L 1 fidesolved Hg/L 2	Nitrogen (Total)	1/3H	100	v-/03E	2,50
Per Cotal Peg/L 10	Reactive Phosphorus	HE/L	1	No Water Quality Objective Value	<1
Perotal Pag/L 4 100	Phosphorus (Total)	Hg/L	10	100/300A	10
Hight Hight 4 1 1 1 1 1 1 1 1 1	Inorganics				
mg/L 1	Cyanide Total	Hg/L	4	No Water Quality Objective Value	\$2
Initium (dissolved) Ing/L 5 initium (dissolved) Ing/L 5 initium (dissolved) Ing/L 0.2 minim (till-vV) (dissolved) Ing/L 0.2 re (dissolved) Ing/L 2 paper 1 0.3 paper 1 0.3 paper 1 0.3 paper 0.3 1	Hydrocarbons				
Initiatin (dissolved)	Oil and Grease	mg/L	1	2/5^	T>
High High High S High Hig	Metals				
	Aluminium (dissolved)	1/8H	in	22	9
	Arsenic (dissolved)	Hg/L	0.2	13	<0>
He He He He He He He He	Chromium (III+VI) (dissolved)	HE/L	0.2	1	0>
(dissolved) Hg/L 2	Copper (dissolved)	HE/L	0.5	14	<0>
(dissolved) Hg/L 0.1 games (dissolved) Hg/L 0.5 Hg/L 0.5 Hg/L 0.5 Hg/L 0.01 Hg/L 0.01 dissolved Hg/L 1 dissolved Hg/L	Iron (dissolved)	Hg/L	2	300	20
Interest	Lead (dissolved)	Hg/L	0.1	3.4	9
(dissolved) Hg/L 0.5	Manganese (dissolved)	HE/L	0.5	1,900	<0>
(dissolved) Hg/L 0.01 (dissolved) Hg/L 1 al coliforms CFU/JOOHL 1 giral Ongen Demand mg/L 2	Nickel (dissolved)	Hg/L	0.5	11	<0>
dissolved Hg/L 1	Silver (dissolved)	HE/L	0.01	0.05	<0.0>
a coliforms	Zinc (dissolved)	Hg/L	1	60	1>
CFU/100mL 1 mg/L 2	Biological				
mg/L	Faecal Coliforms	CFU/100mL	1	10/100^	₽
	Biological Oxygen Demand	mg/t	2	2	2

0.3658 0.0478 0.2103 0.0889 0.7156	0.3858 0.0478 0.2103 0.0889 0.7156	0.3858 0.0478 0.2103 0.0889 0.7156	0.3858 0.0478 0.2103 0.0889 0.7156 2.756 2.	EP1 43	EPI 44	EPL 45	EPL 47	EPL 48	EPT 48	EPL 50
0.3858 0.0478 0.2103 0.0689 0.7156	0.3658 0.0478 0.2103 0.0689 0.7156	0.3858 0.0478 0.2103 0.0889 0.7156	0.3658 0.0478 0.2103 0.0689 0.7156							22/01/20
				0.0000	0.3858	0.0478	0.2103	0.0889	0.7156	30
					6		Y.	ž.		8
				20	839	571	88	ja ja	8!	7.44
					i i	3	T		3	60.7
					х	36	*	P.	30	176.5
				3	10	10	. 20	820		20.4
				300	0		\$855 \$35 \$35 \$35		-	87.2
				9	39	334			27	22.49
										93
					ī	90	3	(A)		<5
					,	30	*		œ.	V
				3.05	co	n	\$ 000 \$ 000		13	200
				500	9	(i)	30 30 30 30		8!	220
					×	a	IV	35-33	3	909
				0 :	y.	30	. 8	() () () () () () () () () ()		300
				W.	10	20		St. 20		<1
					e.		100 E		100	20
				33		200	200	80		20
					×			•	Ţ	2
				Ī						
					e	83				0.17
										,
										40.2
						838				<0.2
						30	3			<0.5
					,	iii	6 4	*		7
					r ž	1	1	200	1	<0.1
						00		Ţ.	8	1.1
	3 3					77	3		3	<0.5
						96	*	100	Ţ.	<0.01
				П	(3)	375	84	70	æ•	0

Note: Treated water was not being discharged at Talbingo Reservoir at the time of EPL sampling.

There is no 100th percentile limit for Nitrogen (Total).

**Near Cuality Objective values Treated Water reference the predicted values for physical and chemical stressors from the treatment plant as presented in the Main Works EIS.

**Samples not required

**O Percentile concentration limit/100 Percentile limit

Inflows to STP and CWTP do not directly correspond to outflow at RO as much of the water is reused on site

Snowy Hydro 2.0 Main Works

EPL 49

0.62

0.62 0.89 0.72 0.52 69.0 0.45 0.85 09:0 0.55 0.54 06.0 0.86 0.65

EPL 48	galitres)	50:0	0.07	90.0	20.0	20.0	80.0	90.0	0.07	90.0	20.0	0.07	80.0	60.0	80.0	0.18	0.18	80.0	80.0	0.07	80.0	0.18	10.0	60:0	0.07	80.0	60.0	80.0	0.18	80.0	80.0	0.08
EPL 47	Discharge volume (Megalitres)	0.15	0.15	0.18	0.16	0.18	0.19	0.13	0.32	0.14	0.17	0.20	0.24	0.20	0.34	0.19	0.23	0.19	0.15	0.21	0.23	0.21	0.20	0.28	0.16	0.22	0.22	0.21	0.19	0.23	0.25	0.18
EPL 45	Discharge	0.04	0.03	0.04	0.05	0.01	0.04	90.0	0.03	0.05	0.07	90.0	90.0	50.0	0.05	80.0	0.01	90.0	0.04	90.0	0.07	90.0	90.0	0.07	0.04	0.05	0.05	0.04	0.04	90.0	0.04	0.05
EPL 44		0.40	0.43	0.62	0.47	0.29	0.51	0.27	0.57	0.37	0.72	0.28	0.34	0.54	0.40	0.61	0.49	29.0	0.58	9.65	0.26	0.19	0.17	0.31	90.0	0.27	0.17	0.20	0.19	0.19	0.10	0.28
										F		0 1										0 -	0 -1					-10	- 10			
EPL 50 ^	Discharge volume (Megalitres)	70.	98	98	86	SE.	16	ii.	3	65	88	88	T.	38	80	æ	SE.	0	ű.	5	77	88	88	20	98	æ	86	60.	8	99	3	ĉ
EPL 43 *	Discharg (Mega	· ·			*	9		9	6.00	1000) (S	3288					9	-	3		526	3 328	3.50			288	2000		350	3.50	6.550	20 20 0
Monthly EPL Sampling: 01-31 January 2025 - Volumes	Date	1/01/2025	2/01/2025	3/01/2025	4/01/2025	5/01/2025	6/01/2025	7/01/2025	8/01/2025	9/01/2025	10/01/2025	11/01/2025	12/01/2025	13/01/2025	14/01/2025	15/01/2025	16/01/2025	17/01/2025	18/01/2025	19/01/2025	20/01/2025	21/01/2025	22/01/2025	23/01/2025	24/01/2025	25/01/2025	26/01/2025	27/01/2025	28/01/2025	29/01/2025	30/01/2025	31/01/2025

0.71

0.63 0.75 0.94 0.72 06.0 09.0 99.0 0.61

0.79

0.82 0.70 0.45

0.63 0.72 0.57

Water not discharged on this day

Note: The EPL discharge volume limit for EPL 43 and 50 is 4.32 megalitres per day. Compliance with this criteria was met during the reporting month.

The maximum flow rate capacity for Lobs Hole STP/PWTP during the reporting month was 7.18 L/s

The maximum flow rate capacity for Tantangara STP/PWTP during the reporting month was 9.84 L/s

Water not discharged on this day

River and Minar Watercourses	parses		Temp ("C)	90 - 110	DO (mg/k)	EC[µ5/cm] 30 - 350	TDS (mg/k)	15.80	Redox (mV)	Turbidity (NTU)		
Date and Time	EPL Site ID	Location Description	Temp (*C) DO (%)	(%) 00	(√9±/) 00	EC(h2/cm)	TDS (mg/L)	T.	Redox (mV)	Turbidity (WTU)	Field Comments	Context
2/2/2025, 7:41 am	SHS	Varrangobily River, upstream of the exploratory tunnel and construction pad	19.83	70.9	7.28	163	106	7.45	267	3.9	Clear surmy day, Lower water level and low rainfall in the last 2 weeks.	This sample point is upstream of works and is therefore supresentative of background conditions.
11/2/2025, 3:51 pm	671.6	Waltaces Creek, upstream of Yarrangobilly River and Waltaces Creek confluence	22.46	67.7	5.86	316	18	245	38	58.4	Overcast day, High sanifall over the past liew days.	This sample point is upstream of works and is therefore representative of background conditions.
2/2/2035, 9-15 am	EM8	Varangobilly River, downstream of Lick Hole Gulfy	31.2	F/29	109	169	9110	20	306	0.3	Clear suriny day, Lower water three and low-rainfal in the tast 2 weeks.	ow DO and alwared pH align with results upotnean of works and reduced flow.
2/2/2025, 9.41 am	6343	Varrangobily River, downstream of the accommodistion camp and upstream of Talbingo Reservoir	21.33	70.8	7.03	165	167	822	313	43	Chiese surmy day. Lower water level and low rainfall in the last 2 worlds.	Low DO and alwaysed pH align with results upstream of works and reduced flow.
2/2/2025, 7:59 am	EPL12	Varrangobilly River, immediately downstream of portal gad	19:61	ENG	6.81	163	106	7.07	288	3.1	Clear surroy day, cower water level and low rainful in the last 2 weeks.	Low DO aligns with reults upstream of works and reduced flow.
2/2/2025, 8:44 am	EHTIS	Varrangobály River, downstream of road construction areas	20.25	75.3	6.81	163	106	7.94	133	2.4	Clear surmy day. Lower water level and low rainful in the list 2 weeks.	Low DO aligns with neuts upstream of works and reduced flow
2/2/2025, 8:56 am	Bhus	Varrangobily River, downstream of road condrutten areas	10.92	5.99	5.93	162	106	s.r.	213	9	Dear turnty day, Lower water lavel and low rainfall in the last 2 weeks.	ow DD and elevated pH align with the historical data recorded for this location in February 2005, especially with reduced flow velocity.
2/2/2025, 10.05 am	BH16	Varrangobilly River, downstream of road construction areas	25.52	17.4	693	165	107	55	109	970	Clear surrey day, Lower water levell and low rearful in the last 2 weeks.	Low DO and alwaysed get align with the Instanced data recorded for this location in February 2025, especially with reduced flow velocity.
19/2/2025, 8:06 am	B134	Varangoběly River unmamad billudary, downslope of GFO1	14.66	222	7.56	607	389	7.17	178	33.5	Summy dies, fow flow, clear water	Low DOand Togs EC can be attributed to low flow, stagment water.
7/2/2GIS, 12:15 pm	5E1/35	Excuribene River downstream of Marica Road	пп	77.4	893	28	х	2	191	13	Clear surmy day, Low water lavel, very low flow. Herea sign in creat bed.	ow DO and elevated gH align with the baseline data and remain with the upstream conditions for February 2025.
7/2/2625, 12:03 pm	BH33	Excumberie Nove upstream of Marka Road	20.38	12.2	6.79	9	Я	18.31	148	13	Chiese suntiny didig. Libow walter layed, valvy low filtim.	his sample point is upstream of works and is therefore apresentative of background confident.
1/2/2025, 10:06 am	DE130	keliye Plain Creek, downstream of accommodation camp and laydown areas.	16.93	3	8.15	8	æ	7,89	an		Chast, fow Tous, suring day, no algot growth.	This sample point is upstream of works and is, therefore, systemistically, at the Chargeount contribution. Tutality at those sites is very low, at expected in low impact waterways. Listing between 0.1. and 1.1 NLL Date to receiptions of the Heinba and reners calibration drift. DATE was seconded:
1/2/2005, 10:21 am	BH31	kel)y. Yizin Ceek, updavam di accommodation camp and laydown areas	17.42	86.4	828	75	21	7.66	218	.0	Chear, no octours, low from, suriny day, no algod growth.	This is sarring qualities in superiors of worker and it, investigate, responseration of background conflictor. "Undefiny at these stors it wery box, as expected in the wimpact worker, we that it fittle be not recently and it will be the respect to the property of the pr
1/2/2025, 9:40 am	69133	Murrumbidgee River, downstream of Tantangara reservoir outlet	20.73	86.7	7.76	35	13	7.35	241	10.6	Sightly turbid, sunny, no odours	low DO and EC aligns directly with neaths upstream of works.
1/2/2005, 9:06 am	RIB	Numer Creek, opstream of Tantangera Youth	16.62	58.1	9.56	9	×	7.69	m	6	Clear, no odours, low fine, mixer algal growth, surriy	This sample point is upstream of works and is, therefore, representative of background conditions.
1/2/2025, 9:13 am	69135	Nungar Civok, downstoam sf Tartangara Road	16.42	96	9.19	66	25	7.57	225	0	The Chast, reinter algal growth, no odders, law flow, suriny	unbiding at these sites is very low, as expected in low impact witerways. Likely between 0.1 and 1 NTL Dus to resolution of the socies and metor calibration drift O.DMTL was recorded.
4/2/2025, 12:39 pm	FF. 36	Carrierans, Creek, upstream of works in Rock Forest	15:02	68.6	5.93	51	33	7,73	315	14	Clear surery day, New read being built nearby, year low water level and low flow. In	This sample point is upotherm of works and is therefore aproximation of background conditions.
4/2/2025, 11-59 am	EP. 37	Camerons Creek, downsteeam of works in Rock Forest	24.53	71.9	5.95	SI	м	7.93	191	23.8	Chair surray clay. Verry loss worter levelt. Water not flowing.	tow DO can be attributed to low flow and seaconal changes in February 2025, however, the ranges remain with the historical data.
3/2/2025, 9:41 am	B152	GF01 seachste basin	34.91	78.9	651	1360.00	880	9.18	178	36	Basin is lower than usual Green like colour, a fair bit of algaring pronth throughout basin, from Fr burbid. No thean Clear, Juriny day, No recentrian events.	High EC an low DG are expected within the leachate storage infrastructure.
Dry	EPLSS	GP01 surface water upstream east	Dry	Dry	bry	Dry	Dry	Dry	Dry	Dry	AA.	54
17/2025, 1:22 pm	B1154 B1155	GF01 surface wither updatesm west GF01 surface wither downstream	Dry 19.6	Dry 88.5	Dry 6.25	1230.00	782	7.01	Dr.	12.3	Day Sunry day, high flow, clian water, no odour by	High EC and low DO can be attributed to the recent rainfall events before sampling. High EC may be attributed to water source and
- 33	59457	Nungar Chuk surface water downstream was from Testangara emplacement area	bry	Aug	, Dry	λq	bry	r, Dev	Aug	AG .	Day.	pproximate Project works.
.50	59171	Sarface water downstream of Marica emplecement.	£	t.	16	30 E	0		8.	10	This lication has been removed and waiting for relibrate it	
15/2/2025, 10:17 am	E9184	F8 Basin	1976	Tr.	(93	#	280	15	191	000t	Highly turbid, record heavy rain, no odours defected,	Low DO and elevated EC and turbidity due to runoff accomulating in the sodiment basin. Water was calen for treatment at the process water treatment plant or re-use where parameters where met.
15/2/2025, 10:33 am	58749	MMO7 Busin	661	2.55	4.8	139	300	9.34	143	1000	Highly furbid, no odours detected, recent heavy sain.	ings EC with elevated turbidity and low DO are expected within the isochate stongs inhastructure and the rainfall events during this period.
15/2/2025, 11:14 am	98169	LMGD1 Basin	81.13	171	6.63	6889	578	55.5	17	žą.	Turbid, no advars detected, water recently transferred to LHG lipsin from MY07 Id.	Fight EC with devated turbidity and low DD are expected within the teachase stonage infrastructure and the rainfall events, during this period.
19	69108	Rock blanker dissersion monitoring under GFO1 liner	Dry	Dry	Dry.	Dry	Dry	Dry	Dry	DV	Dry	W.
15/2/3025, 10:45 am	89139	Marka Leachote Basin-Turkey's Nest	16.14	9 9	6.54	365	172	101	47	443	El Gurriny days, trusted waters, no addour	Bevated turbidity and low 00 are expected within the leachate atorage infrastructure and the rainfall events during this period.
15/2/2025, 11:01 am	EPC100	Marks Lower Leachase Sacin USS Shaft	16.96	5/29	6.52	08	376	#	68	81.5	Euromy days, tumbid waster, no outson	Low DO with alwarded EC and furthed by can be attributed to the curring accumulating in the sediment basin. Water was taken for treatment and springers was taken for treatment. The process water treatment plant or re-use where parameters white that.

Once printed this document becomes uncontrolled

leasurements	
Σ	-
r Quality !	
Water	
Situ	
e in	l
99	

EPL 21266 In Situ Water Quality Measurements Fill Monthly Monthodor Fobrance 2025	February 2025	easurements										
15/2/2025, 10:52 am	EPC101	Marks Leachine Baun Spail Pad	16.06	68	659	362	352	2	59	遵	напту дау, питыб мети, па офраг	Low DO with vilvaried EC and hunhality Lan be attributed to the runtiff accommisting in the sediment basis. Water was taken for treatment at the process water treatment plant or re-use where parameters where rest.
8/2/2025, 9:17 am	EP.106	Rayins Say Leachate basin 1.	25.20	143	6.03	90'067'1	816	1971	90	959	Dark green cobust, buids present, film present, no odour	Envated turbolity with high EC and low DO are expected within the leachain storage infrastructure and the rainfall events during this period.
18/2/2025, 11.43 am	EPLIID	Upstream monitoring of Ranna Bay emplacement area	13.87	85.8	8.8	19	3	22.0	ä	H.	Clear flow, no odbour, heavy rainfall within 5 days.	All reading are within WQO linebs.
	EPLIS	Havine Bay Logchare bean 2	Å	by	Å.	Avg	λıα	Å	Åug	As a	40	334
100	EP.130	Nayne Bay Leachare bases 4	rug.	p,	Bry	Dry	Å	Δ	Dry	Åð.	A.q.	9/2
19/2/2025, 8:27 am	EP1122	GF01 Drainage Line (Formarly PL SSB)	14.06	68.1	6.58	21.18	104	7.79	173	301	Senny day, low Row, clear water	Low DD and high EC with turbidity can be attributed to low flow, stagnant water. Location will continue to be monitored closely.

Water Q ring Febru iter Quality are Reserv	Water Quality Measurements	ring February 2025	ster Quality Data	ara Reservoirs
---	----------------------------	--------------------	-------------------	----------------

EPL Monthly Monitoring February 2025	g February 2025					Metal Carlot	Sections from not	16.31				
Taibingo and Tantangara Reservoirs	Reservoirs		Temp (*C) DO (N)	90-110	(1/8w) 00	EC [45/cm] TD5 (mg/L)		pH 65-80	Redox (mV)	Turbidity (NTU)		
Date and Time	Ci che Ci	acestica Pacedasia	Town life	(M) Od	11/am/00	er fue fem)	TDC lone fit	70	Baday (m))	Tuckidise (NIII)	Entitle Community	Positions
26/2/2025, 8:16 am	FR.10	Talkingo Reservols, downstream of read works and upstream of water intoke point	23.52	75,4	6.41	122	, ,	S	205	S	I No wind, clear day	Elevated water temperatures were considered to influence asl temperatures and temperatures and temperatures which the habilities feed to we considered to melaware the feet CO and elevated E. E. Lee, WITL results from 1 years resulted from the lack of the manner microsity from 10 years to such a feet of green discoloration observed.
26/2/2025, 8:05 am	ERLII	Talkingo Mesevoti, downstream of outlet	33.5	69.2	5.92	58	98	7.93	209		Hoffibs 5 mit yo 1 No wind, surmy day	Elevated water temperatures, reduced scatte inserement and the green discolorations within the water foods yet consistence with organic matters presence during the time of namiping and are considered to effect the conditions recorded at the time of namiping.
9/2/2025, 8:43 am	EP.28	Tantangara Reservoir, upstream of works in the mouth of the Munumbidgee River	212	56.9	5.05	27	11	8.07	225	13	Early morning log, 5mm overright rain, Turning to aurity.	Low DD and elevated pH can be attributed to low reservoir levels in preparation for intake works and notably surfaces temperatures Incressed.
9/2/2025, 9:12 am	EP129	Tantangara Reservoir, downstream of works area and upstream of sower Murumbidges Biver	272	58.3	5.05	36	17	8.16	722	9.3	Early morning fog burning to sanny. No odour or syn of discolouration. Simi rain overnight	Low DO and elevated pH can be attributed to low reservoir levels in preparation for initale works and notably surfaces temperatures increaed.
9/2/2025, 9:01 am	EP.32	Tantangara Reservols, Tantangara intake. Downstream of construction works	22.4	65.2	5.66	36	17	1	230	6	Early morning tog Lurming to sunny. No odour or sign of descolouration. Smm rain overnight	Low DD and elevated pH can be attributed to low reservoir levels in preparation for intale works and increased water temperatures.
1/2/2025, 1:14 pm	EP.38	Tantangara Reservoir, variable location dependant on tide and reservoir levels. Between the emplacement area and the ancitary facilities for emplacement activities.	26.22	78.4	6.34	82	88	8.95	101	10.3	Visually clear, no odours, no algal growth, sunny	Low DO and elevated pH is thought to result from the very low water level and the corresponding inflow fluctuations.
1/2/2025, 11:49 am	EPL39	Confluence of Mungar Creek and Tantangara Reservoir, variable location dependent on tide and reservoir levels. Upstream of Tantangara construction works	12.66	91.5	7.9	30	61	99.9	233	18.7	Signify turted, low flow, sunny day,	All reading are within WQD limits.
9/2/2025, 9:19 am	EP.40	Confluence of the upper Mumumbidgee River and Tantangara Reservoir, variable location dependent on tide and reservoir levels. Upstream of works	19.9	88.4	8.06	30.9	22	7.56	168	5.16	Gran, flowing shallow water. No adour or sheen, Sunny monting with minimal wind. Post rain it event last affulls Small collections of white bubbles seen on the surface. Water level too low is the best access.	Marginally higher EC and lower DIO are understood to have been potentially influenced by the shallow sample collection point and the proximity to the Sank.
9/2/2025, 9:29 am	94143	Tantangara Recervolr, diff user outlet discharging into Tantangara Reservoir from Tantangara STP/PWTP	1977	623	5,43	п	п	8.21	220	10	Early morning fog turning to sunny. No odour or syn of discolouration. Smin rain overnight	Low DO and elevated pH can be attributed to low reservoir levels in preparation for intake works and elevated temperatures.
9/2/2025, 9:18 am	ER 51	Tantangara Reservoir, downstream of Tantangara STP/PWTP diffuser outlet	32.65	57.5	4.97	m	11	23	胡	91	Early morning tog turning to sunny. No odour or ign of discolouration. Smin rain evernight	Low DO and elevated pH can be attributed to low reservoir levels in preparation for intake works and elevated temperatures.
26/2/2025, 7:50 am	EPC107	Upptream montaring of fearine Bay emplacement area within Yarrangebülly River	22.16	8	6.02	#	22	7.64	177	0	Horba's not jul 5 light breass surrey day	Elevated EC and low DD are consistent with hashignound conditions for this water body in dummer. Turbidity at these sites is very low all kely between 0.1 and 1 WTU.
26/2/2025, 7:38 am	EP.108	Monitoring of Ravine Bay emplocement area (center of PSE) within Yarrangobility. River	пл	87.8	7.28	п	п	7.69	204	a	Sight brees, clear day.	Elevated EC and low DO are consistent with basignound conditions for this water body in dummer. Turbidity at these sites is wery low
26/2/2025, 7:30 am	EP.109	Upstream monitoring of Ravine Bay emplacement area within Yarrangobilly River	из	80	7.06	11	20	7.89	151	335	Not much wind, surry day. Weather has been good the past couple of daye.	Marginally elevated EC and low DO align with the background conditions for Varnagoully their in Rebusing 2025. High furbidity can be atributed to the discussed in the water level.
Table 3 - Treated Water Duality Data	etell villen					Water Quality Of	biectives (see note	13)				
Taibingo			Temp ("C)	(%) 00	DO (mg/L)		TDS (mg/L)	pH 65-80	Redox (mV)	Turbidity (NTU)		
Date and Time	EPL Site ID	Location Description	Temp ("C)	(%) OO	DO (mg/L)	EC (µS/cm)	TDS (mg/L)	Z	Redox (mV)	Turbidity (NTU)	Field Comments	Context
2/2/2025, 9:50 am	EP.41	Lobs Hole STP/PWTF Final Effluent Quality Monitoring Point. Downstream of final treatment, prior to dischage to Talbringo Reservoir.	26.69	66.3	5.28	2,210.00	1,410.00	8.12	203	6.6	Vetsathy clear - Illeby turbidity probe error, no odours	This location has been monitored twice a week, however, non discharge occurred in this period and has followed the re-use criteria when applicable.

nts			
EPL 21266 In Situ Water Quality Measuremen	ebruary 2025	ality Data	
21266 In Situ Wate	EPL Monthly Monitoring February 2025	Table 2 - Reservoir Water Quality Dr	

Table 2 - Reservoir Water Quality Data Talbingo and Tantangara Reenvoirs	or Accervoirs		Temp (°C)	(%) 00	DO (mg/L)	Water Quality Ol	Water Quality Objectives (see note 2) EC (µ5/cm) TDS (mg/L) pH Re	2) pH	dox (mV)	Turbidity (NTU)		
1				0-110		20-30		6.5 - 3.0		1-20		
Date and Time	EPL Site ID	Location Description	Temp (°C)	(%) OG	(1/8m) OG	EC (µS/cm)	TDS (mg/L)	Hd	Redox (mV) Turbi	Turbidity (NTU) F	Field Comments	Context
26/2/2025, B:16 am	EPL10	Tablings Reservoir, downstream of road works and upstream of water inside point	25.52		641	k	и			0.00	theritan 5 mont yet. This wind, chear day	Renated water temperatures were considered to influence all reported results for this location. Warmer temperatures within the hallower becation are considered to influence the lover DD and relevanted EL Low MUT wealth may have resulted from the lack of water movement (including the absence of wind influences) and the green discoloration observed.
26/2/2025, 8:05 am	IIIda	Tailings Reservoir, downstream of outlet	212	69.2	292	9	96	7.93	500		Photoba Snottys & No wind, surray day	Perzad ware temperature, reduced water movement and the green dissolvantion within the water body are consistent with organic matter presence during the time of ampling and are considered to effect the conditions recorded at the time of ampling.
9/2/2025, 8:43 am	EPL28	Tantangara Reservoir, upstream of works in the mouth of the Murrumbidgee River	217	56.9	202	82	18	8.07	222	8	Early morning fog. Smm overnight rain. Turning to sunny.	Low DO and elevated pH can be attributed to low reservoir levels in preparation for intake works and notably surfaces temperatures increed.
9/2/2025, 9:12 am	EPL29	Tantangara Reservoir, downstream of works area and upstream of lower Murrumbidgee River	222	583	\$00	92	11	2.16	777	9.3	Early morning fog turning to sunny. No odour or sign of discoloration. Smm rain overnight o	Low DO and elevated pH can be attributed to low reservoir levels in preparation for intake works and notably surfaces temperatures increased.
9/2/2025, 9:01 am	EP132	Tantangara Reservoir, Tantangara Intake. Downstream of construction works	777	65.2	5.66	56	n	12	230	6	Early morning log turning to sunny. No odour or sign of discoloursion. Smm rain overnight	low DO and elevated pH can be attributed to low rezervoir levels in preparation for intale works and increased water temperatures.
1/2/2025, 1:14 pm	EPI38	Tantangara Reservoir, variable location dependant on tide and reservoir levels, Between the empiacement area and the ancillary facilities for empiacement activities	26.22	78.4	634	83	18	563	101	10.3	Manally clear, no odours, no algal growth, aunny	Low DO and elevated pH is thought to result from the very low water level and the corresponding inflow fluctuations.
1/2/2025, 11:49 am	EP139	Confluence of Nungar Oceak and Tantangara Reservoir, variable location dependent on tide and reservoir levels. Upstream of Tantangara construction works	22.65	91.5	7.9	98	19	99.9	233	18.7	Sightly turbid, low flow, sunny day,	All reading are within WQO limits.
9/2/2025, 9:19 am	EPL40	Confluence of the upper Murrumbidgee River and Tantangara Rezervoir, variable location dependent on tide and reservoir levels. Upstream of works	19.9	88.4	3.06	30.9	77	7.56	168	5.16	Clear, Flowing shallow water. No odour or sheen. Surmy morning with minimal wind. Post tails in event that middle, small collections of white bubbles seen on the surface. Water level too low per few boat access.	Marginally higher EC and lower DO are understood to have been potentially influenced by the shallow sample collection point and the proximity to the bank.
9/2/2025, 9:29 am	EPI.46	Tantangara Reservoir, diffluer oudet dischaging into Tantangara Reservoir from Tantangara STP/PWTP	1972	62.9	5.43	п	П	8.21	220		Early morning fag turning to sunny. No adour or zign of discoloration. Smm rain overnight	low DO and elevated pH can be attributed to low reservoir levels in preparation for intake works and elevated temperatures.
9/2/2025, 9:18 am	EP. 51	Tantangan Reservoir, downstream of Tantangan STP/PWTP diffuser outlet	22.65	57.5	497	11	D	818	39	16	Enly moming fag turning to sunmy. No adour or sign of discoloration. Smm rain overnight	Low DO and elevated pH can be attributed to low reservoir levels in preparation for intake works and elevated temperatures.
26/2/2025, 7:50 am	EPU.07	Upstream monitoring of Ravine Bay emplacement area within Yarrangobilly River	22.16	66	602	a	n	7.64	122		Peorita 5 not yo's 1 Sight breeze sumry day.	Elecated EC and low DO are consistent with background conditions for this water body in dummer, l'unidity at these sites is very low. Likely between 0.1 and 1 NTU.
26/2/2025, 7:38 am	EP1108	Monitoring of Ravine Bay emplacement area (center of ISE) within Yarrangobilly River	72.12	82.8	7.28	33	12	7.69	204	0	Sight brees, clear cay.	Elerated EC and low DO are condistent with background conditions for this water body in dummer. Turbidity at these sites is very low Likely between 0.1 and 1 NTU.
26/2/2025, 7:30 am	EP1109	Upstream monitoring of Ravine Bay emplacement area within Varrangobilly River	21.52	8	7.06	31	20	7.89	151	23.5	Not much wind, sunny day, Weather haz been good the past coople of days.	Marginally elevated EC and low DO align with the background conditions for Varrangovilly river in February 2025. High unbidity can be arributted to the dicreased in the water level.
Table 3 - Ireated Water Quality Data Tolbingo	Quality Data		Temp (°C)	(%) OG	DO (mg/t)	Water Quality Of EC (µS/cm)	Water Quality Objectives (see note 3) 2C (µ5/cm) TDS (mg/L) 700 6.9	H 08.8	Redox (mV) Turbic	Turbidity (NTU) 25		
Date and Time	ER. Site ID	Location Description	Temp (°C)	(%) od	DO (mg/L)	EC (µ5/cm)	TDS (mg/L)	Hd	Redox (mV) Turbic	Turbidity (MTU)	Field Comments	Context
2/2/2025, 9:50 am	EPLA1	Lobs Hole STP/PWTP Final Effluent Quality Monitoring Point. Downstream of final treatment, prior to discharge to Talbingo Reservoir.	26.69	66.3	5.28	2210.00	1,410.00	832	203	7 6.6	T Visually clear - likely turbidity probe error, no odours d	This location has been monitored twice a week, however, non discharge occurred in this period and has followed the re-use criteria when applicable.
Takle 4 - Traced Water Quality Data Tantangara	Quantity Date		Temp (°C)	(%) 00	DO (mg/L)	Water Quality Of EC (µS/cm) 200	TDS (mg/L)	Hg Hg 65-80	Redox (mV) Turbs	Turbidity (NTU) 25		
Date and Time	EPL Site ID	Location Description	Temp (°C)	(%) OC	DO (mg/L)	EC (µS/cm)	TDS (mg/L)	H	Redox (mV) Turbis	Turbidity (NTU)	Field Comments	Context
26/2/2025, 10:31 am	EPL50	Tantangara STP/PWTP final Effluent Quality Monitoring Point. Downstream of final treatment, prior to discharge to Tantangara Rezervoir.	19.6	85.7	7.89	10.8	60	5.14	224.5	80	Sunny, Samoled inside RO container. Water very clear, no sediment present; no odour or oil operent. RO plant has chemical cleaning maintenance 3 days prior to sampling.	This location has been monitored twice a week, however, non discharge occurred in this period and has followed the re-use criteria when sandicable.

EPL 21266 In Situ Water Quality Measurements EPL Monthly Monitoring February 2025

			(7)		200	30 - 350	1	65-80	0.000			
Date and Time	DI NIS NO	Location Description	Temp ("C)	(%) 00	(1/8w) 00	EC(pS/cm)	TDS (mg/L)	H	Radox (mV)	Turbidity (NTU)	Fladd Comments	Context
7/2/2025, 3:29 pm	£9/1	Wallace Creak Bridge	20.74	27.9	191	¥05	322	6.77	-83	21.9	Client summy stay, SWL3.31m	Elevated E.C.is within the historical range for this location.
16/2/2025, 9:00 am	69/3	Wallace Creek Bridge	14.62	102.3	10.37	294	752	7.85	-109	294	SWL-3.8 m, sunny day, turbid water, no odsur	All reading are within WQO limits.
11/7/2025, 3:31 pm	EP14	Pertai Acosss	18.70	36.6	1.54	1,320.00	847	8.59	-95	1,000.00	Bore cap under water. Contraminated with surface water SWL at surface.	Elevated EC and pH slign with the historical range for this location.
11/2/2025, 3:12 pm	ENZ	Pertal Access	19.37	29	367	306	324	6.58	-57	423	Deercast day, Heavy rainfal last few days.	Elevated EC within the historical range for this location.
10/2/2025, 2-17 pm	55763	БРО1 groundwater upstream east	25 26	34.8	138	237	7	7.28	135	19.6	Chèar scenny athannoon. High raischall aiveninght: SW1.10.56m	All reading are within WQO limits.
10/2/2025, 2:43 pm	EMES	GPCh groundwater upstream west	20.80	15.5	138	345	150	7.98	911	129	Clear summy afternoon. High rainfall overnight. SWL15.45m	Ab reading are within WQO limits.
10/7/2025, 3-42 pm	85749	БРО дгонгамате фонтойчал	10.71	22.1	198	1140	730	637	981	38.3	SWL 7.45m. Clear, surny day, No record rain events. Water is clear, no obbur, no sheen.	Elevated EC is generally consistent with histocial range for this location. Law get will be montained closely, however bounded pump extraction method is in the process of being upgraded.
8/2/2025, 10:40 am	89745	Tantangae groundwater downstream West	15.92	668	5.61	30	19	als.	198	190	Clear wenty day.	tow pH is generally consistent with the historical data for this location. These fall in time with current seasonal changes.
8/2/2025, 10:17 am	69163	Tarriangera groundwater Gownstruam East	17.06	809	5.87	я	92	634	180	8.08	Chear susmy days, 5901, 2,37m. New starth works upstream.	Low pH is generally consistent with the historical data for this location. These fall in the with curent seasonal changes.
8/2/2025, 8:46 am	66,70	Tantangara groundwater upetroam	16.31	675	5.19	96	2	6.79	183	1000	Dear sumy day, SW1,7,54m, Very turb, greater than 1000bstu.	All reading are within WQO limits.
15/7/2025, 9:36 am	514.72	Warlis ground maler upstream	2 21	54.6	5.95	и	94	5.76	223	858	SWL- 36.04 m, sunmy day, turbid water, no odour	This lecation is upgradient of works and therefore representative of background conditions.
15/2/2025, 10:14 am	EW13	Marica groundwater downstream	11.56	91.2	9.93	ш	93	5.72	230	36.3	SWL-11.96 m, sanny day, turbid water, no odour	The ranges are consistent with the upgradiant conditions for February 2025.
3/2/2025, 2:18 pm	08143	LHG groundwater upstream	23.55	14.7	125	908	275	1111	7	92.4	SWL. 20.55m. your bot alternoon. No recent rain awents. Water is sightly lurbid with sit sixting at the bottom. No odour.	This location is upgradient of works and therefore representative of background conditions.
3/2/2025, 3:14 pm	18763	LHG groundwaser downstream	33.56	283	241	652	985	7.15	-92	1000	SWL-4.5m. Hot atternoon. No recent ram events Water is clear with dark gray tilty addiment setting at the bottom of this sleeve. No odour. NTU reached 1000NTU.	Elevated EC aligns with results sparadant of works.
3/2/2025, 2:36 pm	EM183	MY groundwater upstream	30.38	20.4	1.83	27.10	1730	96.9	-51	123	SWL 6.94m. Very has afternoon. No recent rain enemts. Water is clear with no odour.	This location is upgradient of works and therefore representative of background conditions.
3/2/2025, 4:54 pm	88143	MY groundwater downstream	ии	33.9	10	306	334	622	46	41.7	SWL-3.57m. Hoz afternoon, No recent rain owents. Water is clear, no other:	Elevated EC aligns with visults up gradient of works. Low pit will be closely monitored at this location, however borethole pump estraction mathod is currently being upgraded.
3/2/2025, 2:48 pm	287463	MY groundwater allowstream	1907	17.5	157	nes.	403	6.28	301	0001	SWL4.33m. Very hat summy afternation. Water is brown barbid. No odour. Very similar colour to adjount basin &S. MTU has exceeded 1000.	Elavane's EC aligns with results up gradient of works. Low pit will be closely monitored at this location, however borehole pump extraction mathod is currently being upgraded.
3/3/2025, 3:51 pm	88143	MY groundmater downsteam	1974	15.9	137	909	518	7.3	133	1.2	SWL. 3.47m. Hot afternoon. No recent rain events. Water is very clear with a ouightur like odous:	Elevated EC aligns with results appraisant of works.
3/2/2025, 1:56 pm	68743	тно деостамове вожна в потемента в потемен	24.4	241	201	H	245	96'9	133	326	SWL-3.27m. Hot sunny day, No recent rain event. Water is slightly turbid, no edbur.	Elevated EC aligns with results upgradient of worths.
10/2/2025, 2:05 pm	06 TeB	СРО1 groundwater downstream	17.88	46.9	4.45	SS	ж	MG 9	2	238	Chear summy afternoon, High rainfall owemught. SW1 34.09m.	Low pH is generally consistent with the instancial data for this location. Borehole extraction method is currently being upraised at this location.
10/2/2025, 1-51 pm	16169	GFQ1 groundwater downstream	25.91	243	2.24	243	851	7.13	13	яч	Clear surrry afternoon. High rainfall overnight, SWL6.58.	All reading are within WQO limits.
10/7/2025, 2-58 pm	E01.03	GPUs groundwater downstream	19.75	85.5	7.81	115	K	6.87	35	739	Gear summy afternoon. High rainfall eveninght, SWL13 Stim.	All roading are within WOOD limits.
10/2/2025, 3:06 pm	E6163	GFOt groundwater downstream	18.44	193	181	236	153	215	-56	187	Dear summy affarmoon. High rainfall overhight: SWL 15.20m.	All reading are within WQO limits.
10/2/2025, 3:13 pm	#6 TeB	DFOL groundwater drawmstream.	18.42	19.7	1.85	167	108	6.93	*	88.1	Clear summy afternoon. High rainfall overnight. SWL 15.42m.	AS reading are within WQO limits.
10/7/2025, 3-33 pm	56163	GFO1 groundwater downstream	25.00	επ	1.95	0140	825	6.3	131	819	Owar summy afternoon, High sainfall owemight. SWL15.89m	Bavated EC and low pH have been consistent at this location for this current seasonal range. This location is currently undergoing upge ades in it's astruction method.
3,0,2025, 9:28 am	96 169	БРО1 groundwater downstream	17.42	n	111	75	413	7.15	737	136	SWLS.Elen. This sample point is contaminated due to bore placement and cracking. Please olse prince. Sample only collected to meet PIA requirement. Water is slightly furbid, no olse prince.	Elevated EC is consistent with the historical ranges for this location for fearuary 1025.
10/7/2025, 3-57 pm	66163	GF01 groundwater downstream	30.32	18.7	1.68	433	284	6.78	37	11.3	Clear summy afternoon. High rainfall overnight. SWLS-60m	Elavated EC has been consistent at this location for this current seasonal range.
15/2/2025, 10:33 am	£91163	Groundwater monitoring associated with the Marica emplacement area on Marica. Trail	12.53	85.6	85.6	407	265	6.68	.09	40.9	SWL-8.68 m, sunny day, turbid water, no odour	Elavated EC has been consistent at this location for this current seasonal range.
8/2/2025, 9:07 am	£01103	Upsiveam groundwater monitoring west of the Tantangara emplacement area	15.65	40.8	4.95	38	M	1.44	180	35	Clear summy day, 5WL 11 11m.	This location is upgradient of works and therefore representative of background conditions.
8/2/2025, 11:05 am	EPLICA	thwater	1831	40.1	3.77	59	M	6.33	186	17.3	Clear surry day, SWL 4.56m.	Low pH aligns with needts upgradent of PSE.
8/2/2025, 9:39 am	691105	Downlope groundwater monitoring east of the Tantangera emplocement area	16.76	53.7	521	152	8	573	180	13	Owar summy day. Could not because if pump set up.	Low pH aligns with results upgradient of PSE.
18/7/2025, 11:54 am	£1113	Upstream sast montoring of Ravine Bay emplacement area	16.88	29.6	2.87	120	ı	5.03	219	659	SWL-2-36m; stylish tursid, no odour, recent rainfall >245mm	This lecation is upgradient of works and therefore representative of background conditions.
18/2/2025, 1:05 pm	EP1114	Upstream west monitoring of flavine Bay emplacement area	20.02	13.6	122	403	292	7.34	555	30.3	SWL: 31.64m, clear, no odbar, noom rainfall >24.5mm	This location is upgradent of works and therefore representative of background conditions.

EPL 21266 in Situ Water Qua EPL Monthly Monitoring February	2025	Aeasurements										
18/2/2025, 12:30 pm	EPL115	Downstnam east manazoning of Savina Bay emplacement area	16.36	103	10.08	156	131	7.36	123	355	SWL10.74m, dightly turbid, no odour	High EC aligns with results upgradient of PSE.
18/2/2025, 1-37 pm	911769	Downstream west monitoring of Ravine Bay emplacement area	18.94	82.6	7.67	312	140	6.76	306	1,900	SWL-B&1 HgMy turbid	All neading are within WQO limits.
18/2/2025, 2-11 pm	B1117	Downstream monitoring of flavine Bay emplacement area	19.81	41.2	3.75	147	96	634	9	1000	SWL:16.77mtac	Low pH can be attributed to the surrounding conditions in February 2025.
			200				l					

Note 2: Water Chalify Objective values for Talkings Reserve Note 3: Water Chalify Objective values Treated Water refut Note 4: Water Chalify Objective values for groundwater ref

INIIA

DUDN DATES

101103 191,102 15161 10.00 2014 BIN 25/25 24.50 87.70 SENIO MAN . ana. on. 2010 19143 INIO BLD 0230 19143 2012 22120 ENTE ING Snowy Hydro 2.0 Main Works
Monthly EPL Sampling: 01-28 February 2025 - Groundwater

estine value (segmendante refer to the affect) legger value for physical and themson in south east Assteria (agland rivers) for

Snowy Hydro 2.0 Main Works
Monthly EPL Sampling: 01-28 February 2025 - Talbingo and Tantangara
Reservoir

Analyte	Unit	Limit of Reporting	Water Quality Objective Value*	
Field				797
Hd	pH Unit		6.5-8	∞i
Electrical Conductivity	m2/cm		20-30	
Oxidation Reduction Potential	Λm		No Water Quality Objective Value	30
Temperature	ړ.	200	No Water Quality Objective Value	23
Dissolved Oxygen	% saturation	0 00	90-110	75
Turbidity	UTN	0.000	1-20	0
Laboratory analytes				
Total suspended solids	mg/L	5	No Water Quality Objective Value	
Hardness as CaCO ₃ (filtered)	mg/L	1	No Water Quality Objective Value	
Nutrients				L
Ammonia as N	1/8rl	10	10	
Nitrite + Nitrate as N (NOx)	1/811	10	10	
Kjeldahi Nitrogen Total	HB/L	100	No Water Quality Objective Value	36
Nitrogen (Total)	HE/L	100	350	30
Reactive Phosphorus	1/8H	1	S	V
Phosphorus (Total)	1/8H	10	10	
Inorganics				L
Cyanide Total	Hg/L	4	7	
Hydrocarbons				L
Oil and Grease	mg/L	1	5	₽
Metals				
Aluminium (dissolved)	ME/L	5	55	
Arsenic (dissolved)	HE/L	0.2	13	0
Chromium (III+VI) (dissolved)	HB/L	0.2	1	9
Copper (dissolved)	1/8H	0.5	14	0>
Iron (dissolved)	Hg/L	2	300	
Lead (dissolved)	1/8H	0.1	3.4	₽
Manganese (dissolved)	HB/L	0.5	1,900	9
Nickel (dissolved)	HB/L	0.5	11	9
Silver (dissolved)	HB/L	0.01	0.05	9
Zinc (dissolved)	1/8H	1	8	
Biological				
Faecal Coliforms	CFU/100mL	1	10/100^	1,9
Biochemical Oxygen Demand	mg/L	2	1/5^	

		_	_		_	_		_	_	_	_	_	_	_	_	_	_	_			_					_	_	_	_			_	_	_
EPL109	26/2/25	7.89	31	151	21.52	80	23.5		S	14		40	20	200	200	<10	<10		<4	410		Ş	<0.2	<0.2	<0.5	4	<0.1	<0.5	<0.5	<0.01	<1	1961	70	
EPL108	26/2/25	7.69	32	204	21.74	82.8	0		8	17		20	<10	200	200	<10	10		<4	10		8	<0.2	<0.2	<0.5	4	<0.1	<0.5	<0.5	<0.01	7			*
EPL107	26/2/25	7.64	34	221	22.16	69	0		8	17		09	<10	200	200	<10	<10		42	<10		8	0.2	<0.2	<0.5	9	<0.1	<0.5	<0.5	<0.01	₽		10	Ţ
EPL51	9/2/25	8.18	27	98	22.65	575	9.1		8	6		40	<10	400	400	<10	70		42	<1.0		31	0.3	<0.2	<0.5	251	<0.1	3.2	<0.5	<0.01	D		3300	9
EPL46	9/2/25	8.21	27	220	22.61	62.9	8		9	6		<10	20	300	300	90	40		45	<1.0	3	30	0.3	<0.2	<0.5	252	<0.1	3.0	<0.5	<0.01	₽		×	X
EPL40	9/2/25	7.56	30.9	168	19.9	88.4	5.16		<5	6		20	<10	300	300	<10	20		40	<1.0	3	25	0.2	<0.2	<0.5	104	<0.1	4.4	<0.5	<0.01	D			1
EP139	1/2/25	99'9	30	233	22.65	91.5	18.7		8	7		<10	20	200	200	<10	20		<4	4.0	3	37	0.2	<0.2	<0.5	141	<0.1	8.8	<0.5	<0.01	₽		10	i.
EPL38	1/2/25	8.95	28	101	26.22	78.4	10.3		9	5		<10	<10	300	300	<10	30		<4	<1.0	100	24	0.3	<0.2	<0.5	186	<0.1	2.7	<0.5	<0.01	4		0	7
EPL32	9/2/25	8.1	26	230	22.4	65.2	6		<5	6		<10	<10	400	400	10	40	1 25	49	<1.0	2	30	0.3	<0.2	<0.5	247	<0.1	3.3	<0.5	<0.01	4		6)
EPL29	9/2/25	8.16	26	227	22.5	58.3	9.3		9	6		20	<10	400	400	10	40		44	4.0	8	32	0.3	<0.2	<0.5	246	<0.1	3.4	<0.5	<0.01	P		0	1.
EPL28	9/2/25	8.07	28	225	21.2	6.95	13		00	6		<10	20	300	300	10	40		55	<1.0		26	0.4	<0.2	<0.5	388	<0.1	1.7	<0.5	<0.01	₽		0009	S
EPL11	26/2/25	7.93	95	209	23.15	69.2	0		<5	31		130	<10	400	400	<10	40		49	<1.0		<s< th=""><th>6.0</th><th><0.2</th><th><0.5</th><th>12</th><th><0.1</th><th><0.5</th><th><0.5</th><th><0.01</th><th>1</th><th></th><th>89</th><th>3</th></s<>	6.0	<0.2	<0.5	12	<0.1	<0.5	<0.5	<0.01	1		89	3
EPL10	26/2/25	8.12	78	205	23.52	75.4	0.5		9	43		40	30	300	300	<10	30		45	<1.0	13	8	0.4	<0.2	<0.5	26	<0.1	<0.5	<0.5	<0.01	₽		1,900	8

Water Quality Objective values for Tablingo and Tantangara Reservoir refer to the default trigger values for physical and chemical stressors in south-east Australia (fresh lakes and reservoirs) for the protection of 95% of aquatic species ANZECC / ARMCANZ (2000), they are not polludant limits imposed by PR 121266.
 A plate booms can present as fearcal colforms
 A plate presentation limits 100 percentile concentration limits
 Sample not required at this location.

		S.	Snowy Hydro 2.0 Main Works	5																															1		
Month	hly EPL Sampli	ng: 01-28 Fe	Monthly EPL Sampling: 01-28 February 2025 - Surface Water	l avd			_			-					_																						
Analyte	Unit	Limit of Reporting	Water Quality Objective Value*	2	ENG EN	EPL8	19 BH13	2 BN34	SPITE	BATE	ENTA	8 8	B127 EN	EN30 EN31	EP(3)	H.	PUSS	98148	61437	ENCS	FPLS3	B)54	EPLSS	BUES	1049	BVB	BMB	EN-186	EMS8 EM	EN-99 BN	BAT100	EPL101 B	EP.106	EPLIIO	BUTHS E	EPL120	8422
Field		lini	Part I	2/02/25 11/	11/02/25 2/03	2/02/25 2/02/25	1/03/75	2/02/25	2/02/25	2/02/25	19/02/25	7/02/25 7/	7/02/25 1/0	1,02/25 1,02/	725 1/02/25	1/02/25		4/02/25	4/02/25	3/02/25	Dry	Inv	17/2/25	Dry	-	15/02/25 19	15/02/25 15	15/02/25	- 2	15/02/25	15/02/25	15/2/25 8	8/2/25	18/2/25	Dry	DIN	19/02/25
Hd	.09	7.6	65-8	7.45 8					-		71.7			7.89 7.66	-		151	7.73	7.93	9.18	Dry	Levy .	7.01	AJQ	λo				Dry 8.9	Н	Н		Н	7.54	A/Q		7.79
Electrical Conductivity	m2/cm	*	30.350	163	116 16	160 155	Н	163	163	165	109	77.4	75.2 84	84.3 86.4	A 86.7	98.1	946	9'89	71.9	78.9	Dry	ley	1230	Dry	Div	199	461		Dry 26			362	1270	67	Dry	Dry	778
Oxidation Reduction Potential	Vm	0	No Water Quality Dejective Value	367	38 20	205 212	12 288	3 232	213	159	178	191	148 2	212 216	9 241	222	225	115	191	178	Dry	Sey	142	Dry	Dy	164	343	-28 D	Dry 4	47 8	59	65	95	140	Dry	Dry	173
Temperature	2.	76	No Water Quality Dijective Value	19.83	22.46 21	21.2 21.23	19.61	30.25	20.02	23.52	14.66	22.71	30.38 15	15.93 17.42	42 20.73	16.62	15.42	12.57	24.93	24.91	Dry	, Iny	19.6	Aug	λo	30.54	19.7	21.13		16.14 16	16.96	16.06	25.78	13.87	Dry	A/Q	14,06
Dissolved Oxygen	% saturation	*	90.110	79.9	67.7 67	67.8 79.3	(3 74.3		199	77.4	75.5	-		84.3 86.4	H	98.1	96	9'89	71.9	78.9	Dry	ley	68.5	Dry	λα	74.4	52.5	74.8	Dry 56	L			74.3	858	Dry	Dry	64.1
Turbidity	UTN		2-25	3.9 6	68.4 0.	0.3 4.2	3.1	2.4	1.3	0.4	33.6	12	5.3	0	10.6	0	0	3.6	23.8	16	Dry	try	12.3	Dry	Div	1000	Н	Н	Н	41.3 81	81.5	206	45.6	44	Dry	Dry	306
Laboratory analytas																																					П
TSS	T/Jun	LIS.	No Water Quality Dijective Value	9	+	_	+		+	9	9	-	+	+	+		9	9	10	19	Aug	liv.	9	, Doy	λO	744	804	176	Dry 2	25 25	22	28	9 3	9	NO.	Dry	198
COLOR OF CALCAS	1000	1	and water quality coloring water	ı	45	85 72	2	2	7	90	186	2	2	0	•	2	92	77	22	376	A	A.	350	ALC:	λO	43	4	٠	4	-	4	1	337	61	NA.	λO	184
Ammonia as N	W.V.	10	13	90	et0 2	20 410	30	40	05	30	90	92	10	077	000	S	-cto	410	30	05	Door	- por	30	Dry	NO.	- 410	-410	-10	Dru 68	680	H	H	09	410	Dec	Div	90
NOTITE + Natrate as N (NOx)	N/8rd	10	35	Н	H	H	H	Ł	H	op-	23,600	H	H	H		L	95	10	cto	24,900	hud	- Dry	61,800	Dry	λū	ш		H			19,600	15,800 4	40,000	40	Dry	νω	28,900
Kjelidahi Nitrogen Total	V/M	100	No Water Quality Objective Value	-	_	300 300	200	200		200	2,900	-		200 200	L	-	300	200	400	10,600	Dry	Dry.	2,400	Aug	ΛO	1,600	L		_		L	-	2,830	Q0D>	Aug	Dry	3,200
Mitrogen (Total)	NS/A	100	250	300	200 40	400 200	200	200	Н	300	26,500	Н	Н	Н	Н	300	300	200	400	35,500	Dry	try	64,200	Dry	λO	Ш	Ц	Н	Н	Н		H	42,800	c100	Ory	Н	32,100
Reactive Phosphorus	ML/L	1	15	<10	10	<18 <10	410	979	6	<10	410	Н		Н		c10	<10	410	<10	919	Dry	bry	<10	Dry	Ory	10	Ц	Н			<10	30	10	<10	Dry	Dry	<10
Phosphorus (Total)	HE/L	10	20	20	20 5	50. 20	0 40	70	30	20	10	95	30	10 <10	30	92	40	09	20	30	Dry	Inv	90	Dry	λū	540	260	260 0	Dry 3	30 2	7.	80	20	10	Dry	DIV	160
Inorganics					ŀ		-	-	I.	1	-	-	ł	-	-	-	-										1	ł			-						
Cyanida Total	MEA	4	7	49	04	49 04	4 04	90	90	404	10	49	9	44 44	40	40	40	49	40	40	Dry	by	49	Aug	λū	- 64	75	40	Dry .	**	40	10	44	10	Dry	Dry	10
Hydrocarbons				H	ŀ	L	H	ŀ	ŀ			ŀ	ŀ	ŀ	ŀ	ŀ	L						0.000			ļ	ŀ	+	-	ŀ	-	ŀ					
Oil and drease	mg/t.	-		4.0	4.0	40 40	0.0	0.00	170	979	4.0	450	0.0	4.0	0.00	G.5	4.0	d.0	979	0.5	Dry	lay.	45.0	Aug.	λig	0.0	g D	Q D	Div of	4.0	410	4.0	0.00	970	λíg	Dry	979
Metals				- -	-	-					-	-			-			-	-	-	-	-			-	-	-					-	-				
Aleminium (total)	A Mark		No Water Quality Disective Value	. 9		. 8	. 4	. 4	. 4	. 4	. 4	. 35						1.0	. 08	13	And o	NA NA	71	Dry Ory	- 8				The state of	. 69	. «	. 36			, and	. Our	. «
Acsenic (total)	V.m	0.2	No Water Quality Designe Value	╀	╀	Ł	+	H	+			H	H	H	H	H				6.9	Dov	ja.	0.8	Dry				H	H	ŀ	F						
Arsenic (dissolved)	1/8rt	0.2	0.8	90	0.4	90 90	9.0	90	90	90	9.0	-0.2	00.2	-0.2 -0.2	2 0.3	0.2	0.3	5.0	50	89	N/G	hr.	0.8	Dry	Dry	2.2	17.2	9.9	Dry 1	1.2	2.6	1.9	2.4	8.0	Dry	DIV	0.3
Chepmium (III+VI) (total)	N/M	0.2	No Water Quality Objective Value		4	9		8	4		9	0	4	1	4		g	g.	9	1.5	Ory	bry	90	Dry		14			-4	3		œ.		4		4	
Outpenium (III+VI) (dissolved)	NW/	0.2	0.01	0.3	40.2	402 402	2 03	95	<0.2	40.5	0.4	03	0.2	40.2	2 40.2	40.2	40.2	402	<0.2	1.4	Aug	In	9.0	Dry	λO	2.0	13.0	15.2 D	Dry 18	18.3 8	8.4	13.8	2.3	40.2	λď	DIV	-0.2
Copper (total)	N/In	0.5	No Water Quality Objective Value		+										- 1	. 4				8 0	NO.	A.	40.5	Aug	- 1		+	+	+			+	, 00				
From floatall	Nat.	2 2	No Water Oualty Objective Value	+	90	+	╀	╀	╀	9	90	H	₽	L	╀	+	-	200	200	14	Dr.	lev d	500	Dry	À	-		7.0	4	ł	H	200	-	9 .	4	ALL .	ca.
from (dissolved)	Mary.	7	300	,	- 89	7 8	4	150	10	7	7.	74	27 4	45 33	3 242	165	173	353	371	2	Dry	ley.	4	Dry	ΛQ	42		9	Dry	0	0	a	0	27	A.O	Dry	4
Lead (total)	NS/L	0.1	No Water Quality Dijective Value			1					4		200	L	_	200	-			40.1	Aug	Iny	0.1	Duy	18		0	50									
(pexplosed)	3/26	0.1	1	40.1	40.1	401 40.1	13 <0.1	1.00.1	<0.1	40.1	40.1	40.1	00.1 ≪	40.1	1 00.1	40.1	40.1	40.1	-0.1	40.1	Ory	Jul.	40.1	Aug	NO.	40.1	40.1	40.1 D	Dr.y 40	40.1	-0.1	-0.1	+0.1	40.1	Dry	Dry	<0.1
Manganese (total)	NW/	5.0	No Water Quality Objective Value			*					-				•	*	,	4	*	3.2	Aug	bry.	9.6	Dry	١.	,			-	200							
Manganese (dissolved)	HE/K	0.5	1,200	77	3.8	1.7 3.0	1.2	1.4	1.9	2.2	108	17.1	2.4	3.5 2.3	1 23	8.5	62	0.80	3.5	0.7	Vid	hy	7.7	Dry	ΛO	9.0	40.5	14.4	Dry	10.5	240	7.2	<0.5	40.5	Dry	Dry	12.4
McKell (total)	NW.	5.0	No Water Quality Objective Value	+	+	+	+	+	4	1	1	+	+	+	+	+	1	1	1	40.5	Dry	hy	1.8	Dry		1	+	+	+	1	+	1	1	1	1	1	
Mckel (Ssolved)	N/M	9.0	8	40.5	40.5 do	40.5	15 40.5	5 40.5	<0.5	40.5	670	40.5	00.5 et	40.5	5 40.5	40.5	40.5	905	<0.5	9.5	Duy	Inv	11	Dry	λO	9:0	40.5	0.6	Dr.y	40.5	0.8	40.5	1.4	40.5	Dry	Dry	1.3
Silver (total)	NW/	0.01	No Water Quality Objective Value	+	+	4	+	+	+	1	-	+	+	+	+	+			,	<0.01	Dry	by	10.01	Aug.		+	4	+	+	+	+	+		,			,
Silver (dissolved)	Vin	0.01	0.02	4001	40.01	40.01	c0.03	10 00 11	10:00	10 01	40.01	0001	0001	10.05	1000	100>	1000	10.05	40.01	40.01	Aug O	A.	1000	Aug Duck	À	10.05	10.01	-0.01	Dry	40.01	4001	1000	10.03	40.01	Day.	Dry	<0.01
New (Septemb)	100		2 4			7		7	1	-		7		7	7	7				, ,	200	- Park		NO.	ě	7			Day.	1		7	- 12	30	ě	2	
The annual state				1	1	-	1	1	1			1	ł	1	ł	ł			,	,	-				5	,		1	1	-		,		-		-]

Monthly EPL Sampling: 01-28 February 2025 - Treated Water

Analyte	Unit	Limit of Reporting	Water Quality Objective Value*
Flow Rate			
Inflow*	ML/day	38	36
Outflow*	ML/day		4.32 (EPL 43 / 50)
Field			6
Hd	pH Unit	Ŷ	6.5-8.5
Electrical Conductivity	ms/cm	41	700 (EPL 41) / 200 (EPL 50)
Oxidation Reduction Potential	Vm	4	No Water Quality Objective Value
Temperature	٥,		15
Dissolved Oxygen	% saturation	7	No Water Quality Objective Value
Turbidity	UTN		<25
aboratory analytes		5.	
Total suspended solids	mg/L	s	5/10
Hardness as CaCO _a (filtered)	mg/L	Ħ	No Water Quality Objective Value
Nutrients			
Ammonia as N	Hg/L	10	200/2000^
Nitrite + Nitrate as N (NOx)	ug/L	10	10
Kjeldahi Nitrogen Total	1/8н	100	No Water Quality Objective Value
Nitrogen (Total)	1/81	100	v/05E
Reactive Phosphorus	Hg/L	1	No Water Quality Objective Value
Phosphorus (Total)	Hg/I	10	100/300^
norganics			
Cyanide Total	1/8н	4	No Water Quality Objective Value
Hydrocarbons			
Oil and Grease	mg/L	1	2/5^
Wetals	0.00		
Aluminium (dissolved)	1/81	5	55
Arsenic (dissolved)	Hg/L	0.2	13
Chromium (III+VI) (dissolved)	1/811	0.2	1
Copper (dissolved)	Hg/L	0.5	14
Iron (dissolved)	Hg/L	2	300
Lead (dissolved)	H8/I	0.1	3.4
Manganese (dissolved)	1/8H	0.5	1,900
Nickel (dissolved)	HB/L	0.5	II
Silver (dissolved)	Hg/L	0.01	0.05
Zinc (dissolved)	Hg/L	1	8
Biological		¥	
Faecal Coliforms	CFU/100mL	1	10/100^
Biological Owners Demonstrated	1/500	2	3

EPL 44 EPL 45
0.1994 0.0523
#
90
20 20 20
**
10
20 00 00
00 100
954
25
55
0
20 20 20
2 2 2
35 37
*

Note: There is no 100th percentile limit for Nitrogen (Total).

• Water Quality Objective values Treated Water reference the predicted values for physical and chemical stressors from the treatment plant as presented in the Main Works EIS.

• Samples not required

• 90 Percentile concentration limit/100 Percentile limit

in Inflows to STP and CWTP do not directly correspond to outflow at RO as much of the water is reused on site.

Snowy Hydro 2.0 Main Works

		- 54			9		(20)					3									- 20		1				(2)	- 33	- 23
Date	2/1/2025	2/2/2025	2/3/2025	2/4/2025	2/5/2025	2/6/2025	2/7/2025	2/8/2025	2/9/2025	2/10/2025	2/11/2025	2/12/2025	2/13/2025	2/14/2025	2/15/2025	2/16/2025	2/17/2025	2/18/2025	2/19/2025	2/20/2025	2/21/2025	2/22/2025	2/23/2025	2/24/2025	2/25/2025	2/26/2025	2/27/2025	2/28/2025	

Water not discharged on this day

Note: The EPL discharge volume limit for EPL 43 and 50 is 4.32 megalitres per day. Compliance with this criteria was met during the reporting month.

The maximum flow rate capacity for Lobs Hole STP/PWTP during the reporting month was 4.40 L/s

The maximum flow rate capacity for Tantangara STP/PWTP during the reporting month was 11.34 L/s

Water not discharged on this day